Reputation: 423
for example my df is:
movie_name gender
"abc" f
"abc" m
"bbb" m
I want a new df to be:
movie_name male_count female_count diff
"abc" 1 1 0
"bbb" 1 0 1
how can I achieve this goal?
Upvotes: 1
Views: 78
Reputation: 13407
This is a crosstab
table:
out = pd.crosstab(index=df["movie_name"], columns=df["gender"])
out["diff"] = out["m"] - out["f"]
print(out)
gender f m diff
movie_name
abc 1 1 0
bbb 0 1 1
Upvotes: 0
Reputation: 195408
Another solution, using .pivot_table()
:
df_out = (
df.pivot_table(index="movie_name", columns="gender", aggfunc="size")
.fillna(0)
.astype(int)
.rename(columns={"m": "male_count", "f": "female_count"})
)
df_out["diff"] = df_out["male_count"] - df_out["female_count"]
print(df_out)
Prints:
gender female_count male_count diff
movie_name
"abc" 1 1 0
"bbb" 0 1 1
Upvotes: 4
Reputation: 23099
use groupby
with unstack()
df1 = df.groupby(['movie_name','gender'])['gender']\
.count().unstack(1,fill_value=0)\
.rename(columns={'f' : 'female', 'm' : 'male'})\
.add_suffix('_count')
then use .map
for the diff column, probably a more elegant way to do this.
df1['diff'] = df1.index.map(df1.stack()\
.reset_index(1,drop=True)\
.groupby(level=0).diff().dropna())
gender female_count male_count diff
movie_name
abc 1 1 0.0
bbb 0 1 1.0
Upvotes: 1