Reputation: 61
I get an error saying that the input should be of type Tensor, not tuple. I do not know how to work around this problem, as I am already implementing the return_dict=False method as stated in the migration plan.
My model is as follows:
class XLNetClassifier(torch.nn.Module):
def __init__(self, dropout_rate=0.1):
super(XLNetClassifier, self).__init__()
self.XLNet = XLNetModel.from_pretrained('xlnet-base-cased', return_dict=False)
self.d1 = torch.nn.Dropout(dropout_rate)
self.l1 = torch.nn.Linear(768, 64)
self.bn1 = torch.nn.LayerNorm(64)
self.d2 = torch.nn.Dropout(dropout_rate)
self.l2 = torch.nn.Linear(64, 3)
def forward(self, input_ids, attention_mask):
x = self.XLNet(input_ids=input_ids, attention_masks = attention_mask)
x = self.d1(x)
x = self.l1(x)
x = self.bn1(x)
x = torch.nn.Tanh()(x)
x = self.d2(x)
x = self.l2(x)
return x
The error occurs when calling the dropout.
Upvotes: 6
Views: 12671
Reputation: 19385
The XLNetModel returns two output values:
That means you get a tuple and not a single tensor as the error message says. Your class definition should therefore be:
from transformers import XLNetModel, XLNetTokenizerFast
import torch
class XLNetClassifier(torch.nn.Module):
def __init__(self, dropout_rate=0.1):
super(XLNetClassifier, self).__init__()
self.XLNet = XLNetModel.from_pretrained('xlnet-base-cased', return_dict=False)
self.d1 = torch.nn.Dropout(dropout_rate)
self.l1 = torch.nn.Linear(768, 64)
self.bn1 = torch.nn.LayerNorm(64)
self.d2 = torch.nn.Dropout(dropout_rate)
self.l2 = torch.nn.Linear(64, 3)
def forward(self, input_ids, attention_mask):
x = self.XLNet(input_ids=input_ids, attention_masks = attention_mask)
x = self.d1(x[0])
x = self.l1(x)
x = self.bn1(x)
x = torch.nn.Tanh()(x)
x = self.d2(x)
x = self.l2(x)
return x
tokenizer = XLNetTokenizerFast.from_pretrained('xlnet-base-cased')
model = XLNetClassifier()
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt", return_token_type_ids=False)
outputs = model(**inputs)
or even better without return_dict=False
class XLNetClassifier(torch.nn.Module):
def __init__(self, dropout_rate=0.1):
super(XLNetClassifier, self).__init__()
self.XLNet = XLNetModel.from_pretrained('xlnet-base-cased')
self.d1 = torch.nn.Dropout(dropout_rate)
self.l1 = torch.nn.Linear(768, 64)
self.bn1 = torch.nn.LayerNorm(64)
self.d2 = torch.nn.Dropout(dropout_rate)
self.l2 = torch.nn.Linear(64, 3)
def forward(self, input_ids, attention_mask):
x = self.XLNet(input_ids=input_ids, attention_masks = attention_mask)
x = self.d1(x.last_hidden_state)
x = self.l1(x)
x = self.bn1(x)
x = torch.nn.Tanh()(x)
x = self.d2(x)
x = self.l2(x)
return x
Upvotes: 3