Reputation: 267
I want to do the following :
flag anomalies in 10 .csv
files in a folder (all 10 files have the same column names A-J).
export the flagged data frames to 1 .xlsx
with 10 sheets
(append the 10 flagged df to 1 xlsx file)
NOTE: The anomaly here is defined as any value lower than 1500
and higher than 100000
in each row.
To flag one file at a time, the code looks something like this :
import pandas as pd
# intialise data of lists
data = {'A':['R1', 'R2', 'R3', 'R4', 'R5'],
'B':[12005, 18190, 1021, 13301, 31119],
'C':[11021, 19112, 19021,15, 24509 ],
'D':[10022,19910, 19113,449999, 25519],
'E':[14029, 29100, 39022, 24509, 412271],
'F':[52119,32991,52883,69359,57835],
'G':[41218, 52991,1021,69152,79355],
'H': [43211,7672991,56881,211,77342],
'J': [31211,42901,53818,62158,69325],
}
# Create DataFrame
df = pd.DataFrame(data)
# Print the output.
df.describe()
## flagging anomalies in each row
def flag_outliers(s):
# force to numeric and coerce string to NaN
s = pd.to_numeric(s, errors='coerce')
indexes = (s<1500)|(s>1000000)
return ['background-color: red' if v else '' for v in indexes]
styled = df.style.apply(flag_outliers, axis=1)
styled.to_excel("flagged_outliers.xlsx", index=False)
An example of a flagged data frame looks like this :
Thanks in advance
Upvotes: 1
Views: 211
Reputation: 75080
I think you can use a loop here to get the read the csv files and apply the style then save as excel in each sheet, note that I have used the same path for reading the csv's and saving the output excel, you can change the path to output by defining a path2 and using it in the writer = ....
variable:
path = "full\\path\\to_folder\\"
import glob
import os
files = glob.glob(path+"\*.csv")
writer = pd.ExcelWriter(os.path.join(path,"combined.xlsx"), engine = 'xlsxwriter')
for file in files:
dataframe = pd.read_csv(file)
(dataframe.style.apply(flag_outliers, axis=1)
.to_excel(writer, sheet_name = os.path.split(file)[-1][:-4],index=False))
writer.save()
This will save the dataframes in each sheet with the csv filenames.
Upvotes: 1