Mike Nakis
Mike Nakis

Reputation: 61993

Efficient generation of sampled waveforms without aliasing artifacts

For a project of mine I am working with sampled sound generation and I need to create various waveforms at various frequencies. When the waveform is sinusoidal, everything is fine, but when the waveform is rectangular, there is trouble: it sounds as if it came from the eighties, and as the frequency increases, the notes sound wrong. On the 8th octave, each note sounds like a random note from some lower octave.

The undesirable effect is the same regardless of whether I use either one of the following two approaches:

From what I gather, the literature considers these waveform generation approaches "naive", resulting in "aliasing", which is the cause of all the undesirable effects.

What this all practically translates to when I look at the generated waveform is that the samples-per-second value is not an exact multiple of the waves-per-second value, so each wave does not have an even number of samples, which in turn means that the number of samples at level 1.0 is often not equal to the number of samples at level -1.0.

I found a certain solution here: https://www.nayuki.io/page/band-limited-square-waves which even includes source code in Java, and it does indeed sound awesome: all undesirable effects are gone, and each note sounds pure and at the right frequency. However, this solution is entirely unsuitable for me, because it is extremely computationally expensive. (Even after I have replaced sin() and cos() with approximations that are ten times faster than Java's built-in functions.) Besides, when I look at the resulting waveforms they look awfully complex, so I wonder whether they can legitimately be called rectangular.

So, my question is:

What is the most computationally efficient method for the generation of periodic waveforms such as the rectangular waveform that does not suffer from aliasing artifacts?

Examples of what the solution could entail:

  1. The computer audio problem of generating correct sample values at discrete time intervals to describe a sound wave seems to me somewhat related to the computer graphics problem of generating correct integer y coordinates at discrete integer x coordinates for drawing lines. The Bresenham line generation algorithm is extremely efficient, (even if we disregard for a moment the fact that it is working with integer math,) and it works by accumulating a certain error term which, at the right time, results in a bump in the Y coordinate. Could some similar mechanism perhaps be used for calculating sample values?

  2. The way sampling works is understood to be as reading the value of the analog signal at a specific, infinitely narrow point in time. Perhaps a better approach would be to consider reading the area of the entire slice of the analog signal between the last sample and the current sample. This way, sampling a 1.0 right before the edge of the rectangular waveform would contribute a little to the sample value, while sampling a -1.0 considerable time after the edge would contribute a lot, thus naturally yielding a point which is between the two extreme values. Would this solve the problem? Does such an algorithm exist? Has anyone ever tried it?

Please note that I have posted this question here as opposed to dsp.stackexchange.com because I do not want to receive answers with preposterous jargon like band-limiting, harmonics and low-pass filters, lagrange interpolations, DC compensations, etc. and I do not want answers that come from the purely analog world or the purely theoretical outer space and have no chance of ever receiving a practical and efficient implementation using a digital computer.

I am a programmer, not a sound engineer, and in my little programmer's world, things are simple: I have an array of samples which must all be between -1.0 and 1.0, and will be played at a certain rate (44100 samples per second.) I have arithmetic operations and trigonometric functions at my disposal, I can describe lines and use simple linear interpolation, and I need to generate the samples extremely efficiently because the generation of a dozen waveforms simultaneously and also the mixing of them together may not consume more than 1% of the total CPU time.

AMENDMENT

For anyone wondering what happened with this, read this post on my blog:

michael.gr - Digital Audio Waveform Generation

Upvotes: 1

Views: 561

Answers (2)

vindur
vindur

Reputation: 436

The Soundpipe library has the concept of a frequency table, which is a data structure that holds a precomputed waveform such as a sine. You can initialize the frequency table with the desired waveform and play it through an oscilator. There is even a module named oscmorph which allows you to morph between two or more wavetables.

This is an example of how to generate a sine wave, taken from Soundpipe's documentation.

int main() {
    UserData ud;
    sp_data *sp;
    sp_create(&sp);
    sp_ftbl_create(sp, &ud.ft, 2048);
    sp_osc_create(&ud.osc);

    sp_gen_sine(sp, ud.ft);
    sp_osc_init(sp, ud.osc, ud.ft);
    ud.osc->freq = 500;
    sp->len = 44100 * 5;
    sp_process(sp, &ud, write_osc);

    sp_ftbl_destroy(&ud.ft);
    sp_osc_destroy(&ud.osc);
    sp_destroy(&sp);
    return 0;
}

Upvotes: 1

Phil Freihofner
Phil Freihofner

Reputation: 7910

I'm not sure but you may have a few of misconceptions about the nature of aliasing. I base this on your putting the term in quotes, and from the following quote:

What this all practically translates to when I look at the generated waveform is that the samples-per-second value is not an exact multiple of the waves-per-second value, so each wave does not have an even number of samples, which in turn means that the number of samples at level 1.0 is often not equal to the number of samples at level -1.0.

The samples/sec and waves/sec don't have to be exact multiples at all! One can play back all pitches below the Nyquist. So I'm not clear what your thinking on this is.

The characteristic sound of a square wave arises from the presence of odd harmonics, e.g., with a note of 440 (A5), the square wave sound could be generated by combining sines of 440, 1320, 2200, 3080, 3960, etc. progressing in increments of 880. This begs the question, how many odd harmonics? We could go to infinity, theoretically, for the sharpest possible corner on our square wave. If you simply "draw" this in the audio stream, the progression will continue well beyond the Nyquist number.

But there is a problem in that harmonics that are higher than the Nyquist value cannot be accurately reproduced digitally. Attempts to do so result in aliasing. So, to get as good a sounding square wave as the system is able to produce, one has to avoid the higher harmonics that are present in the theoretically perfect square wave.

I think the most common solution is to use a low-pass filtering algorithm. The computations are definitely more cpu-intensive than just calculating sine waves (or doing FM synthesis, which was my main interest). I am also weak on the math for DSP and concerned about cpu expense, and so, avoided this approach for long time. But it is quite viable and worth an additional look, imho.

Another approach is to use additive synthesis, and include as many sine harmonics as you need to get the tonal quality you want. The problem then is that the more harmonics you add, the more computation you are doing. Also, the top harmonics must be kept track of as they limit the highest note you can play. For example if using 10 harmonics, the note 500Hz would include content at 10500 Hz. That's below the Nyquist value for 44100 fps (which is 22050 Hz). But you'll only be able to go up about another octave (doubles everything) with a 10-harmonic wave and little more before your harmonic content goes over the limit and starts aliasing.

Instead of computing multiple sines on the fly, another solution you might consider is to instead create a set of lookup tables (LUTs) for your square wave. To create the values in the table, iterate through and add the values from the sine harmonics that will safely remain under the Nyquist for the range in which you use the given table. I think a table of something like 1024 values to encode a single period could be a good first guess as to what would work.

For example, I am guestimating, but the table for the octave C4-C5 might use 10 harmonics, the table for C5-C6 only 5, the table for C3-C4 might have 20. I can't recall what this strategy/technique is called, but I do recall it has a name, it is an accepted way of dealing with the situation. Depending on how the transitions sound and the amount of high-end content you want, you can use fewer or more LUTs.

There may be other methods to consider. The wikipedia entry on Aliasing describes a technique it refers to as "bandpass" that seems to be intentionally using aliasing. I don't know what that is about or how it relates to the article you cite.

Upvotes: 2

Related Questions