Reputation: 1187
I am trying to apply a custom function to each group in a groupby object and store the result into new columns in each group itself. The function returns 2 values and I want to store these values separately into 2 columns in each group.
I have tried this:
# Returns True if all values in Column1 is different.
def is_unique(x):
status = True
if len(x) > 1:
a = x.to_numpy()
if (a[0] == a).all():
status = False
return status
# Finds difference of the column values and returns the value with a message.
def func(x):
d = (x['Column3'].diff()).dropna()).iloc[0]
return d, "Calculated!"
# is_unique() is another custom function used to filter unique groups.
df[['Difference', 'Message']] = df.filter(lambda x: is_unique(x['Column1'])).groupby(['Column2']).apply(lambda s: func(s))
But I am getting the error: 'DataFrameGroupBy' object does not support item assignment
I don't want to reset the index and want to view the result using the get_group
function. The final dataframe should look like:
df.get_group('XYZ')
-----------------------------------------------------------------
| Column1 | Column2 | Column3 | Difference | Message |
-----------------------------------------------------------------
| 0 A | XYZ | 100 | | |
---------------------------------- | |
| 1 B | XYZ | 20 | 70 | Calculated! |
---------------------------------- | |
| 2 C | XYZ | 10 | | |
-----------------------------------------------------------------
What is the most efficient way to achieve this result?
Upvotes: 4
Views: 2613
Reputation: 862611
I think you need:
def func(x):
d = (x['Column3'].diff()).dropna()).iloc[0]
last = x.index[-1]
x.loc[last, 'Difference'] = d
x.loc[last, 'Message'] = "Calculated!"
return x
df1 = df.filter(lambda x: is_unique(x['Column1']))
df1 = df1.groupby(['Column2']).apply(func)
Upvotes: 3