Reputation: 429
I am trying to implement the code from a Pytorch beginner's tutorial. But I have written the code for loading the saved model in another Python file.
The FashionClassify
file contains the code exactly as its in the tutorial.
Below is the code:
from FashionClassify import NeuralNetwork
from FashionClassify import test_data
import torch
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
classes = [
"T-shirt/top", "Trouser","Pullover","Dress","Coat","Sandal","Shirt","Sneaker","Bag","Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)],classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
However, when I run this, the entire training process starts again. Why is that so ? OR Is it an expected behavior ?
(I have gone through a couple of webpages and StackOverflow answers but couldn't find my problem)
FashionClassify file code:
import torch
from torch import nn
from torch.utils.data import DataLoader # wraps an iterable around dataset
from torchvision import datasets # stores samples and their label
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib as plt
training_data = datasets.FashionMNIST(root='data', train=True, download=True, transform=ToTensor(), )
test_data = datasets.FashionMNIST(root='data', train=False, download=True, transform=ToTensor(), )
batch_size = 64
train_dataLoader = DataLoader(training_data, batch_size=batch_size)
test_dataLoader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataLoader:
print('Shape of X [N,C,H,W]:', X.size())
print('Shape of y:', y.shape, y.dtype)
break
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))
# to define a NN, we inherit a class from nn.Module
class NeuralNetwork(nn.Module):
def __init__(self):
# will specify how data will proceed in the forward pass
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X,y) in enumerate(dataloader):
X,y = X.to(device), y.to(device)
#compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
#backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch%100 ==0:
loss,current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model):
size = len(dataloader.dataset)
model.eval()
test_loss, correct = 0,0
with torch.no_grad():
for X, y in dataloader:
X,y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataLoader, model, loss_fn, optimizer)
test(test_dataLoader, model)
print("Done!")
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Upvotes: 0
Views: 834
Reputation: 477
That's what happens when you import another file. All the code gets rerun.
Instead, in your training file:
class FancyNetwork(nn.Module):
[...]
def train():
[train code]
if __name__ == "__main__":
train()
Now when you run this file train() will get called, but when you import this file in another one, train won't get called automatically.
Upvotes: 1