Reputation: 31
I have been trying to implement Miller-Rabin primality test in Python. Unfortunately there seems to be a problem on some prime numbers. Any help is appreciated.
Code:
def _isPrime(n):
if n % 2 == 0:
return False
a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
s, d = _Apart(n) # turns it into 2^s x d
print(s, d)
basePrime = False
isPrime = True
for base in a:
if base >= n-2:
break
if isPrime == False and basePrime == False:
return False
witness = pow(base, d)
if (witness % n) == 1 or (witness % n) == (n-1):
basePrime = True
continue
else:
basePrime = False
for r in range(1, s):
witness = pow(base, pow(2, r) * d)
if (witness % n) != ( n - 1 ):
isPrime = False
return True
Test:
isPrime(17)
Expected:
True
Result:
False
Upvotes: 2
Views: 2131
Reputation: 1
def is_prime(n):
"""returns True if n is prime else False"""
if n < 5 or n & 1 == 0 or n % 3 == 0:
return 2 <= n <= 3
s = ((n - 1) & (1 - n)).bit_length() - 1
d = n >> s
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
p = pow(a, d, n)
if p == 1 or p == n - 1 or a % n == 0:
continue
for _ in range(s):
p = (p * p) % n
if p == n - 1:
break
else:
return False
return True
Upvotes: 0
Reputation: 7224
I wrote a Miller Rabin test that is deterministic, no need for random numbers. This implementation is for python 3.7. In python 3.8, llinear_diophantinex can be replaced with pow(x, -1, y). Also i used gmpy2 as it's very fast, but you can just replace the gmpy2 statements with normal pow if you can't use that, and just remove the gmpy2.mpz() wrappers since those are just used to overload operators.
import gmpy2
sinn = 2110229697309202254897383305762150945330987087513434511395506048950594976569434432057019507105035289374307720719984431280856161609820548842778454256113246763860786119268583367543952735347969627478873317341364209555365064365565504232770227619462128918701942169785585423104678142850200975026619010035331023744330713985615650556129731348659986462960062760308034462660525448390420668021248422741300646552941285862310410598374242189448623917196191138254637812716211329113836605859918549332304189053950819346551095911511755911832183789503704294770046935064469435830299623205136625543859303686699678929069468518950480476841246805908501510754550017255944080874819287974625925494008373883250410775902993163965873632474224574883242826458163446781002284368017611606202344050570737818087202137703099075773680753707346415849787963446390136517016131227807076254668461445862154978026041507116570585784569893773262639243954090283224759975513502582494002154146757110676408972377044584495342170277522887809749465855954126593100747444378301829661568735873345178089061677917127496915956539418931430313218084338374827152407795095072639044306222222695685778907958272820576498682506540189586657786292950574081739269257159839589987847266550007783514316481286222515710538845836151864127815058116482680058626451349913138908040817800742009650450811565324184631847563730941344941348929727603343965091116543702880556850922077216848669966268219928808236163268726995495688157209747596437162960244538054993785127947211290438554095851924381172697827312534174244295581184309147813790451951453564726742200569263225639113681905176376701339808868274637448606821696026703034737428319530072483125495383057919894902076566679023694181381398377144302767983385253577700652358431959604517728821603076762965129019244904679015099154368058005173028200266632883632953133017055122970338782493475762548347258351148037427739052271661340801912188203749647918379812483260399614599813650518046331670764766419886619324840045611486524123102046413946014624119568013100078163986683199814025915420877588778260860713148420321896163326473203441644820182490479899368048072263481024886708136521847014624735722333931331098969321911443978386868675912141648200500219168920887757573018380579532261231821382787339600631297820996466930957801607217549420247654458172818940238337170577825003408756362106088558651381993611741503374243481167926898332728164900189941804942580426055589622673679047058619682175301326905577843405270203660160407401675700528981573327582844330828861745574031416926871562443652858767649050943181353635950301154441954046214987718582670685455252774874198771086552440702483933126644594300464549471422237478151976561680719370424626162642534252062987911763456822609569209140676822858933588602318066530038691463577379331113471591913447226829868760176810195567325921301390329055242213842898142597360121925124635965685365925901913816717677946911762631634793638450106377437599347740569467683272089859392249351406815344105961234868327316964137925419770514177021722214309784062017826024217906664090209434553785436385765927274067126192143337589109608949427467825999057058702263715338956534536892852849984934736685814891286495169007648767081688963426768409476169071460997622740467533572971356017575900999100928776382541052696124463195981888715845688808970103527288822088031150716134784735332326775370417950625124642515148342694377095213470544739900830244879573205335578256682901821773047071352497997708791157012233232529777513203024818391621220967964874173106990772425289900446640237659116713251437567138729645677868024033209183367071421651937808005637679844370347367922676824239404492688418047080583797577102267329067247758368597488680401670673861120323439239792549053895366970423259196919428554146265587250617656401028722578111927104663315250291888502226235291264834968061065817079511872899991276288365723969841290984981957389126603952133124328219936785870274843554107325931034103072894378438818494802517594594270034007832922248742746517915210656205746338575621725899098414488628833412591266637224507533934158213117522503993423240638893845121918647788013
def llinear_diophantinex(a, b, divmodx=1, x=1, y=0, offset=0, withstats=False, pow_mod_p2=False):
origa, origb = a, gmpy2.mpz(b)
r=a
q = a//b
prevq=1
if a == 1:
return 1
if withstats == True:
print(f"a = {a}, b = {b}, q = {q}, r = {r}")
while r != 0:
prevr = r
a,r,b = b, b, r
q,r = divmod(a,b)
x, y = y, x - q * y
if withstats == True:
print(f"a = {a}, b = {b}, q = {q}, r = {r}, x = {x}, y = {y}")
y = gmpy2.mpz(1 - origb*x // origa - 1)
if withstats == True:
print(f"x = {x}, y = {y}")
x,y=y,x
modx = (-abs(x)*divmodx)%origb
if withstats == True:
print(f"x = {x}, y = {y}, modx = {modx}")
if pow_mod_p2==False:
return (x*divmodx)%origb, y, modx, (origa)%origb
else:
if x < 0: return (modx*divmodx)%origb
else: return (x*divmodx)%origb
def ffs(x):
"""Returns the index, counting from 0, of the
least significant set bit in `x`.
"""
return (x&-x).bit_length()-1
def MillerRabin(arglist):
N = arglist[0]
primetest = arglist[1]
iterx = arglist[2]
powx = arglist[3]
withstats = arglist[4]
primetest = gmpy2.powmod(primetest, powx, N)
if withstats == True:
print("first: ", primetest)
if primetest == 1 or primetest == N - 1:
return True
else:
for x in range(0, iterx):
primetest = gmpy2.powmod(primetest, 2, N)
if withstats == True:
print("else: ", primetest)
if primetest == N - 1: return True
if primetest == 1: return False
return False
def sfactorint_isprime(N, withstats=False):
N = gmpy2.mpz(N)
from multiprocessing import Pool
if N <= 1: return False
if N == 2:
return True
if N % 2 == 0:
return False
if N < 2:
return False
# Add Trial Factoring here to speed up smaller factored number testing
iterx = ffs(N-1)
""" This k test is an algorithmic test builder instead of using
random numbers. The offset of k, from -2 to +2 produces pow tests
that fail or pass instead of having to use random numbers and more
iterations. All you need are those 5 numbers from k to get a
primality answer.
"""
k = llinear_diophantinex(N, 1<<N.bit_length(), pow_mod_p2=True) - 1
t = N >> iterx
tests = [k-2, k-1, k, k+1, k+2]
for primetest in range(len(tests)):
if tests[primetest] >= N:
tests[primetest] %= N
arglist = []
for primetest in range(len(tests)):
if tests[primetest] >= 2:
arglist.append([N, tests[primetest], iterx, t, withstats])
with Pool(5) as p:
s=p.map(MillerRabin, arglist)
if s.count(True) == len(arglist): return True
else: return False
return s
Upvotes: 2
Reputation: 944
Recently I also tried to implement this algorithm in the deterministic form, as shown in Miller Test, and ran into the same problem. I couldn't figure out why it failed for some numbers so I decided to implement the 'complete' Miller-Rabin Test and it worked.
I should warn that it gets slow quickly as n
increases. It's advised to use some numeric library like Numpy to optimize the calculations.
With some tweaks on your code it can be achieved:
import random
def _isPrime(n):
if n % 2 == 0:
return False
rounds = 40 # Determines the accuracy of the test
s, d = _Apart(n) # Turns it into 2^s x d + 1
for _ in range(rounds):
base = random.randrange(2, n-1) # Randomly selects a base
witness = pow(base, d)
if (witness % n) == 1 or (witness % n) == (n-1):
continue
for _ in range(1, s):
witness = pow(witness, 2) % n
if witness == (n-1):
break
else: # if the for-loop is not 'broken', n is not prime
return False
return True
Upvotes: 0