Reputation: 3177
I have calendar dataframe as follows.
calendar = pd.DataFrame({"events": ["e1", "e2", "e3"],
"date_start": ["2021-02-01", "2021-02-06", "2021-02-03"],
"date_end":["2021-02-04", "2021-02-07", "2021-02-03"],
"country": ["us", "us", "uk"]})
calendar["date_start"] = pd.to_datetime(calendar["date_start"])
calendar["date_end"] = pd.to_datetime(calendar["date_end"])
and I have a daily dataframe as follows.
daily = pd.DataFrame({"date": pd.date_range(start="2021-02-01", end="2021-02-08"),
"value":[10, 20, 30, 40, 50, 60, 70, 80]})
I would like to take only events from US and join to the daily dataframe but the joining conditions are (date >= date_start) and (date <= date_end). So the expected output looks like this
date value events
2021-02-01 10 e1
2021-02-02 20 e1
2021-02-03 30 e1
2021-02-04 40 e1
2021-02-05 50
2021-02-06 60 e2
2021-02-07 70 e2
2021-02-08 80
I can do looping but it is not effective. May I have your suggestions how to do in the better way.
Upvotes: 6
Views: 598
Reputation: 28659
One option for a non-equi join is the conditional_join from pyjanitor; underneath the hood it uses binary search to avoid a cartesian product; this can be helpful, depending on the data size:
# pip install pyjanitor
import janitor
import pandas as pd
(
daily
.conditional_join(
calendar,
("date", "date_start", ">="),
("date", "date_end", "<="),
how="left")
.loc[:, ['date', 'value', 'events']]
)
date value events
0 2021-02-01 10 e1
1 2021-02-02 20 e1
2 2021-02-03 30 e1
3 2021-02-03 30 e3
4 2021-02-04 40 e1
5 2021-02-05 50 NaN
6 2021-02-06 60 e2
7 2021-02-07 70 e2
8 2021-02-08 80 NaN
Upvotes: 0
Reputation: 470
Here is a possible answer to your question.
import numpy as np
import pandas as pd
data_temp_1 = pd.merge(daily,calendar,how='cross')
data_temp_2 = data_temp_1.query('country=="us"')
indices = np.where((data_temp_2['date'] >= data_temp_2['date_start']) & (data_temp_2['date'] <= data_temp_2['date_end']),True,False)
final_df = data_temp_2[indices]
final_df.reset_index(drop=True,inplace=True)
To get the expected df we can use code
Upvotes: 1
Reputation: 1252
You can first explode the calendar and then merge on days:
calendar['date'] = [pd.date_range(s, e, freq='d') for s, e in
zip(calendar['date_start'], calendar['date_end'])]
calendar = calendar.explode('date').drop(['date_start', 'date_end'], axis=1)
events = calendar.merge(daily, how='inner', on='date')
us_events = events[events.country == 'us'].drop('country', axis=1)[['date', 'value', 'events']]
I think it is faster than the other answers provided (no apply
).
Upvotes: 0
Reputation: 34046
Use df.merge
:
# Do a cross-join on the `tmp` column
In [2279]: x = calendar.assign(tmp=1).merge(daily.assign(tmp=1))
# Filter rows by providing your conditions
In [2284]: x = x[x.date.between(x.date_start, x.date_end) & x.country.eq('us')]
# Left-join with `daily` df to get all rows
In [2289]: ans = daily.merge(x[['date', 'events']], on='date', how='left')
In [2290]: ans
Out[2290]:
date value events
0 2021-02-01 10 e1
1 2021-02-02 20 e1
2 2021-02-03 30 e1
3 2021-02-04 40 e1
4 2021-02-05 50 NaN
5 2021-02-06 60 e2
6 2021-02-07 70 e2
7 2021-02-08 80 NaN
Upvotes: 5