Reputation: 105
I have a list of >1.000 companies which I could use to invest in. I need the ticker symbol id's from all these companies. I find difficulties when I am trying to strip the output of the soup, and when I am trying to loop through all the company names.
Please see an example of the site: https://finance.yahoo.com/lookup?s=asml
. The idea is to replace asml and put 'https://finance.yahoo.com/lookup?s='+ Companies
., so I can loop through all the companies.
companies=df
Company name
0 Abbott Laboratories
1 ABBVIE
2 Abercrombie
3 Abiomed
4 Accenture Plc
This is the code I have now, where the strip code doesn't work, and where the loop for all the company isn't working as well.
#Create a function to scrape the data
def scrape_stock_symbols():
Companies=df
url= 'https://finance.yahoo.com/lookup?s='+ Companies
page= requests.get(url)
soup = BeautifulSoup(page.text, "html.parser")
Company_Symbol=Soup.find_all('td',attrs ={'class':'data-col0 Ta(start) Pstart(6px) Pend(15px)'})
for i in company_symbol:
try:
row = i.find_all('td')
company_symbol.append(row[0].text.strip())
except Exception:
if company not in company_symbol:
next(Company)
return (company_symbol)
#Loop through every company in companies to get all of the tickers from the website
for Company in companies:
try:
(temp_company_symbol) = scrape_stock_symbols(company)
except Exception:
if company not in companies:
next(Company)
Another difficulty is that the symbol look up from yahoo finance will retrieve many companies names. I will have to clear the data afterwards. I want to set the AMS exchange as the standard, hence if a company is listed on multiple exchanges, I am only interested in the AMS ticker symbol. The final goal is to create a new dataframe:
Comapny name Company_symbol
0 Abbott Laboratories ABT
1 ABBVIE ABBV
2 Abercrombie ANF
Upvotes: 1
Views: 4578
Reputation: 764
Here's a solution that doesn't require any scraping. It uses a package called yahooquery (disclaimer: I'm the author), which utilizes an API endpoint that returns symbols for a user's query. You can do something like this:
import pandas as pd
import yahooquery as yq
def get_symbol(query, preferred_exchange='AMS'):
try:
data = yq.search(query)
except ValueError: # Will catch JSONDecodeError
print(query)
else:
quotes = data['quotes']
if len(quotes) == 0:
return 'No Symbol Found'
symbol = quotes[0]['symbol']
for quote in quotes:
if quote['exchange'] == preferred_exchange:
symbol = quote['symbol']
break
return symbol
companies = ['Abbott Laboratories', 'ABBVIE', 'Abercrombie', 'Abiomed', 'Accenture Plc']
df = pd.DataFrame({'Company name': companies})
df['Company symbol'] = df.apply(lambda x: get_symbol(x['Company name']), axis=1)
Company name Company symbol
0 Abbott Laboratories ABT
1 ABBVIE ABBV
2 Abercrombie ANF
3 Abiomed ABMD
4 Accenture Plc ACN
Upvotes: 5