Reputation: 333
I am new in data visualization. I am practicing Seaborn and I am trying to plot a barplot with this dataframe. I want the chart has 3 bars on each symbol, however, the output has only 1 bar on each symbol. May I know how to fix it?
Part of the DataFrame...
returns_7d returns_30d returns_ytd
symbol
TDOC -0.210839 -17.712095 -3.922423
EXAS -4.649067 -6.439275 -1.415680
PACB -2.953760 11.886232 37.815711
REGN 0.465364 5.803325 -0.629814
TWST 6.707956 3.619967 10.4043
The code like this:
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
# Change the style of the figure to the "dark" theme
sns.set_style("darkgrid")
plt.figure(figsize=(12,6))
plt.title('YTD Returns')
sns.barplot(x=returns_all.index,y=returns_all['returns_7d'],color='b',edgecolor='w',label='returns_7d')
sns.barplot(x=returns_all.index,y=returns_all['returns_30d'],color='r',edgecolor='w',label='returns_30d')
sns.barplot(x=returns_all.index,y=returns_all['returns_ytd'],color='g',edgecolor='w',label='returns_ytd')
plt.xlabel('symbol', fontsize=11)
plt.ylabel('%', fontsize=11)
plt.xticks(rotation = 90)
plt.legend()
plt.show()
Output like this:
Upvotes: 1
Views: 732
Reputation: 80279
To create such a plot using seaborn, note that seaborn prefers its data in "long form". reset_index
converts the index to a regular column, and melt
converts the columns to <variable, value>
pairs.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from io import StringIO
data_str = ''' returns_7d returns_30d returns_ytd
TDOC -0.210839 -17.712095 -3.922423
EXAS -4.649067 -6.439275 -1.415680
PACB -2.953760 11.886232 37.815711
REGN 0.465364 5.803325 -0.629814
TWST 6.707956 3.619967 10.4043'''
df = pd.read_csv(StringIO(data_str), delim_whitespace=True)
df.index.name = 'symbol'
df_long = df.reset_index().melt(id_vars='symbol')
sns.barplot(data=df_long, x='symbol', y='value', hue='variable', palette='rocket')
plt.show()
The long dataframe looks like:
symbol variable value
0 TDOC returns_7d -0.210839
1 EXAS returns_7d -4.649067
2 PACB returns_7d -2.953760
3 REGN returns_7d 0.465364
4 TWST returns_7d 6.707956
5 TDOC returns_30d -17.712095
6 EXAS returns_30d -6.439275
7 PACB returns_30d 11.886232
8 REGN returns_30d 5.803325
9 TWST returns_30d 3.619967
10 TDOC returns_ytd -3.922423
11 EXAS returns_ytd -1.415680
12 PACB returns_ytd 37.815711
13 REGN returns_ytd -0.629814
14 TWST returns_ytd 10.404300
Upvotes: 2
Reputation: 29982
I think pandas.DataFrame.plot() is all your need.
df.plot(kind='bar')
Upvotes: 1