msba
msba

Reputation: 139

I want to run my function with one specific genome. How can i activate it?

I trained a neural network for playing TicTacToe. Now i want to play against it. In the training sessions i use this code

output = neat.nn.FeedForwardNetwork.create(genome, config).activate(input)

How can i play vs a chosen genome? I tried this:

output = genome.activate(input)

Result AttributeError: 'DefaultGenome' object has no attribute 'activate'

code: (the error occures in def game())

import neat
import pygame
import os
import json
import random
import checkpoint
import winsound
import time
import matplotlib.pyplot as plt

pygame.init()
shown = True
cloud = checkpoint.Checkpointer()
GEN = 0
if shown:
    screen = pygame.display.set_mode((300, 300))
    pygame.display.set_caption("Tic Tac Toe")
    o_icon = pygame.image.load("o.png")
    x_icon = pygame.image.load("x.png")

class Field:
    def __init__(self, c_shown):
        self.field = [0,0,0, 0,0,0, 0,0,0]
        self.shown = c_shown
        self.winner = None

    def reset(self):
        self.field = [0,0,0, 0,0,0, 0,0,0]
        self.winner = None

    def display(self):
        screen.fill([0,0,0])
        self.display_pieces()
        self.display_board()
        pygame.display.update()

    def display_pieces(self):
        pos_to_pix = {
            0: (0,0),
            1: (100,0),
            2: (200,0),
            3: (0,100),
            4: (100,100),
            5: (200,100),
            6: (0, 200),
            7: (100, 200),
            8: (200, 200)
        }
        for pos in range(len(self.field)):
            if self.field[pos] == 1:
                screen.blit(o_icon, pos_to_pix[pos])
            elif self.field[pos] == 2:
                screen.blit(x_icon, pos_to_pix[pos])

    @staticmethod
    def pos_to_field(pos):
        x = pos[0]
        y = pos[1]
        if x < 100:
            x = 0
        elif x < 200:
            x = 1
        else:
            x = 2
        if y < 100:
            y = 0
        elif y < 200:
            y = 1
        else:
            y = 2
        return x+y*3

    @staticmethod
    def display_board():
        pygame.draw.rect(screen, "White", [0,99, 300,2])
        pygame.draw.rect(screen, "White", [0,199, 300,2])
        pygame.draw.rect(screen, "White", [99,0, 2,300])
        pygame.draw.rect(screen, "White", [199,0, 2,300])

    def action(self, field_id, player_id):
        self.field[field_id] = player_id

    def field_is_free(self, field):
        if self.field[field] == 0:
            return True
        return False

    def check_winner(self):
        for line in range(3):
            # check horizontal
            if self.field[line*3] == self.field[line*3+1] == self.field[line*3+2] != 0:
                self.winner = self.field[line]
                return True, self.winner
            if self.field[line] == self.field[line+3] == self.field[line+6] != 0:
                self.winner = self.field[line]
                return True, self.winner
        if self.field[0] == self.field[4] == self.field[8] != 0 or self.field[2] == self.field[4] == self.field[6] != 0:
            self.winner = self.field[0]
            return True, self.winner
        return False

    def first_free(self):
        for index, value in enumerate(self.field):
            if value == 0:
                return index

class Player:
    def __init__(self, id, being):
        self.id = id
        self.being = being

class Graph:
    def __init__(self):
        self.gens = []
        self.maxs = []
        self.losts = []
        self.drawns = []
        self.wons = []
        self.average = []
        self.last_gens = 20
        self.vmax = None

    def add(self, gen, vmax_round, losts, drawns, wons):
        self.gens.append(gen)
        self.maxs.append(vmax_round)
        self.losts.append(losts)
        self.drawns.append(drawns)
        self.wons.append(wons)
        self.average.append(sum(self.maxs[-self.last_gens:]) / self.last_gens)
        self.vmax = max(self.maxs)

    def display(self):
        plt.figure(figsize=(10,6))
        plt.plot(self.gens, self.maxs, label="Best Fitness")
        plt.plot(self.gens, self.average, label="Average Fitness last " + str(self.last_gens) + " generations")
        plt.plot(self.gens, self.losts,  label="Lost")
        plt.plot(self.gens, self.drawns,  label="Drawn")
        plt.plot(self.gens, self.wons,  label="Won")
        plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left")
        plt.grid("on")
        plt.tight_layout()
        plt.show()

    def save(self):
        with open('gens.txt', 'w') as filehandle:
            json.dump(self.gens, filehandle)
        with open('maxs.txt', 'w') as filehandle:
            json.dump(self.maxs, filehandle)
        with open('average.txt', 'w') as filehandle:
            json.dump(self.average, filehandle)
        with open('losts.txt', 'w') as filehandle:
            json.dump(self.losts, filehandle)
        with open('drawns.txt', 'w') as filehandle:
            json.dump(self.drawns, filehandle)
        with open('wons.txt', 'w') as filehandle:
            json.dump(self.wons, filehandle)

    def load(self):
        with open('gens.txt', 'r') as filehandle:
            self.gens = json.load(filehandle)
        with open('maxs.txt', 'r') as filehandle:
            self.maxs = json.load(filehandle)
        with open('average.txt', 'r') as filehandle:
            self.average = json.load(filehandle)
        with open('losts.txt', 'r') as filehandle:
            self.losts = json.load(filehandle)
        with open('drawns.txt', 'r') as filehandle:
            self.drawns = json.load(filehandle)
        with open('wons.txt', 'r') as filehandle:
            self.wons = json.load(filehandle)

graph = Graph()
board = Field(shown)
players = [Player(1, "random"), None]

def place_piece(player, field):
    board.field[field] = player.id

def sound():
    winsound.Beep(440,100)


def main(genomes, config):
    global GEN
    GEN += 1
    best_fitness = 0

    for index, genome in genomes:
        index -= 1
        genome.fitness = 0
        net = neat.nn.FeedForwardNetwork.create(genome, config)

        players[1] = Player(2, "ai")
        player = players[0]

        lost, drawn, won = 0,0,0

        for round in range(100):
            field_to_go = -1
            placed = 0

            while True:
                if player.being == "random" or player.being == "ai":
                    field_to_go = random.randint(0,8)
                elif player.being == "ai":
                    output = net.activate(board.field)
                    field_to_go = output.index(max(output))
                elif player.being == "human":
                    for event in pygame.event.get():
                        if event.type == pygame.QUIT:
                            pygame.quit()
                            break
                        elif event.type == pygame.MOUSEBUTTONUP:
                            field_to_go = board.pos_to_field(pygame.mouse.get_pos())

                if field_to_go > -1:
                    if board.field_is_free(field_to_go):
                        board.action(field_to_go, player.id)
                    else:
                        board.action(board.first_free(), player.id)

                    if player == players[0]:
                        player = players[1]
                    else:
                        player = players[0]
                    placed += 1

                if shown:
                    board.display()

                if board.check_winner() or placed == 9:
                    if board.winner == 1:
                        genome.fitness += 0
                        lost += 1
                    elif board.winner is None:
                        genome.fitness += 1
                        drawn += 1
                    else:
                        genome.fitness += 2
                        won += 1
                    board.reset()
                    break
        if genome.fitness > best_fitness:
            best_fitness = genome.fitness
            best_lost = lost
            best_drawn = drawn
            best_won = won

    graph.add(GEN, best_fitness, best_lost, best_drawn, best_won)

def game(genome):
    running = True
    while running:
        placed = 0

        players[0] = Player(1, "human")
        players[1] = Player(2, "ai")

        player = players[0]
        while True:
            field_to_go = -1
            if player.being == "random":
                field_to_go = random.randint(0, 8)
            elif player.being == "ai":
                output = genome.activate(board.field)
                field_to_go = output.index(max(output))
            elif player.being == "human":
                for event in pygame.event.get():
                    if event.type == pygame.QUIT:
                        pygame.quit()
                        break
                    elif event.type == pygame.MOUSEBUTTONUP:
                        field_to_go = board.pos_to_field(pygame.mouse.get_pos())

            if field_to_go > -1:
                if board.field_is_free(field_to_go):
                    board.action(field_to_go, player.id)
                else:
                    board.action(board.first_free(), player.id)

                if player == players[0]:
                    player = players[1]
                else:
                    player = players[0]
                placed += 1

            board.display()

            if board.check_winner() or placed == 9:
                board.reset()
                break

def run(config_path):
    global shown
    global GEN
    config = neat.config.Config(neat.DefaultGenome, neat.DefaultReproduction,
                                neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path)
    nc_name = "population"

    shown = False
    new = True

    sound()

    while GEN < 50:
        if new:
            p = neat.Population(config)
            p.add_reporter(neat.StdOutReporter(True))
            p.add_reporter(neat.StatisticsReporter())
        else:
            p = cloud.restore_checkpoint(nc_name).population
            graph.load()

        GEN = p.generation

        p.run(main, 10)
        cloud.save_checkpoint(config, p, p.species, GEN, nc_name)
        graph.save()
        if new:
            new = False
    graph.save()
    graph.display()

game(cloud.restore_checkpoint("population").population.best_genome)

if __name__ == "__main__":
    local_dir = os.path.dirname(__file__)
    config_path = os.path.join(local_dir, "config_feedforward")
    run(config_path)

Upvotes: 1

Views: 216

Answers (0)

Related Questions