Reputation: 65
There is a huge df with multiple columns but want to read only specific column that is interested to me:
in the below data, I would like to read only the column 'Type 1'
import numpy as np
import pandas as pd
data = {'Type 1': {0: 1, 1: 3, 2: 5, 3: 'HH', 4: 9, 5: 11, 6: 13, 7: 15, 8: 17},
'Type 2': {0: 'AA',
1: 'BB',
2: 'np.NaN',
3: '55',
4: '3.14',
5: '-96',
6: 'String',
7: 'FFFFFF',
8: 'FEEE'},
'Type 3': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0},
'Type 4': {0: '23',
1: 'fefe',
2: 'abcd',
3: 'dddd',
4: 'dad',
5: 'cfe',
6: 'cf42',
7: '321',
8: '0'},
'Type 5': {0: -120,
1: -120,
2: -120,
3: -120,
4: -120,
5: -120,
6: -120,
7: -120,
8: -120}}
df = pd.DataFrame(data)
df
int_count = df['Type 1'].count(0,numeric_only = True) # should count only cells that contain integers and return 8
total_count = df['Type 1'].count(0,numeric_only = False) # should count all the cells and return 9
I want something like count only the numeric values in particular column
eg: df['Type 1'].count(0,numeric_only = True) should return 8 (exclude counting the string 'HH' in Type 1 column)
df['Type 1'].count(0,numeric_only = False) should return 9 (total number of cells in the particular column)
but "df['Type 1'].count(0,numeric_only = True/False)" this is not working as I expect...
Upvotes: 0
Views: 1212
Reputation: 171
I would suggest the below:
int_count = len(df.loc[df['Type 1'].astype(str).str.isnumeric()])
total_count = len(df)
Upvotes: 1