Reputation: 170
I've got a script wherein I have two functions, makeplots()
which makes a figure of blank subplots arranged in a particular way (depending on the number of subplots to be drawn), and drawplots()
which is called later, drawing the plots (obviously). The functions are posted below.
The script does some analysis of data for a given number of 'targets' (which can number anywhere from one to nine) and creates plots of the linear regression for each target. When there are multiple targets, this works great. But when there's a single target (i.e. a single 'subplot' in the figure), the Y-axis label overlaps the axis itself (this does not happen when there are multiple targets).
Ideally, each subplot would be square, no labels would overlap, and it would work the same for one target as for multiple targets. But when I tried to decrease the size of the y-axis label and shift it over a bit, it appears that the actual axes object was drawn over the previously blank, square plot (whose axes ranged from 0 to 1), and the old tick mark labels are still visible. I'd like to have those old tick marks removed when calling drawplots()
. I've tried changing the subplot_kw={}
arguments in makeplots
, as well as removing ax.set_aspect('auto')
from drawplots
, both to no avail. Note that there are also screenshots of various behaviors at the end, also.
def makeplots(targets, active=actwindow):
def rowcnt(y):
rownumb = y//3 if (y%3 == 0) else y//3+1
return rownumb
def colcnt(x):
if x <= 3: colnumb = x
elif x == 4: colnumb = 2
else: colnumb = 3
return colnumb
numsubs = len(targets)
numrow, numcol = rowcnt(numsubs), colcnt(numsubs)
if numsubs >= 1:
if numsubs == 1:
fig, axs = plt.subplots(num='LOD-95 Plots', nrows=1, ncols=1, figsize = [8,6], subplot_kw={'adjustable': 'box', 'aspect': 1})
# changed 'box' to 'datalim'
fig, axs = plt.subplots(num='LOD-95 Plots', nrows=numrow, ncols=numcol, figsize = [numcol*6,numrow*6], subplot_kw={'adjustable': 'box', 'aspect': 1})
fig.text(0.02, 0.5, 'Probit score\n $(\sigma + 5)$', va='center', rotation='vertical', size='16')
else:
raise ValueError(f'Error generating plots [call: makeplots({targets},{active}) - invalid numsubs value]')
axs = np.ravel(axs)
for i, ax in enumerate(axs):
ax.set_title(f'Limit of Detection: {targets[i]}', size=11)
ax.grid()
return fig, axs
and
def drawplots(ax, dftables, color1, color2):
y = dftables.probit
y95 = 6.6448536269514722
logreg = False
regfun = lambda m, x, b : (m*x) + b
regq = scipy.stats.linregress(dftables.qty,y)
regl = scipy.stats.linregress(dftables.log_qty,y)
if regq.rvalue**2 >= regl.rvalue**2:
regression = regq
x_label = 'input quantity'
x = dftables.qty
elif regq.rvalue**2 < regl.rvalue**2:
regression = regl
x_label = '$log_{10}$(input quantity)'
x = dftables.log_qty
logreg = True
slope, intercept, r = regression.slope, regression.intercept, regression.rvalue
r2 = r**2
lod = (y95-intercept)/slope
xr = [0, lod*1.2]
yr = [intercept, regfun(slope, xr[1], intercept)]
regeqn = "y = "+str(f"{slope:.2e}")+"x + "+str(f"{intercept:.3f}")
if logreg:
lodstr = f'log(LOD) = {lod:.2f}' if lod <= 100 else f'log(LOD) = {lod:.2e}'
elif not logreg:
lodstr = f'LOD = {lod:.2f}' if lod <= 100 else f'LOD = {lod:.2e}'
# raise ValueError(f'Error raised calling drawplots()')
ax.set_xlabel(x_label, fontweight='bold')
ax.plot(xr, yr, color=color1, linestyle='--') # plot regression line
ax.plot(lod, y95, marker='D', color=color2, markersize=7) # plot point for LoD
ax.plot(xr, [y95,y95], color=color2, linestyle=':') # horizontal crosshair
ax.plot([lod,lod],[0, 7.1], color=color2, linestyle=':') # vertical crosshair
ax.scatter(x, y, s=81, color=color1, marker='.') # actual data points
ax.annotate(f"{lodstr}", xy=(lod,0.1),
xytext=(0.9*lod,0.5), fontsize=8, arrowprops = dict(facecolor='black', headlength=5, width=2, headwidth=5))
ax.set_aspect('auto')
ax.set_xlim(left=0)
ax.set_ylim(bottom=0)
ax.plot()
if logreg: lod = 10 ** lod
return r2, lod, regeqn, logreg
The context they're called in:
fig, axs = makeplots(targets)
wg.SetForegroundWindow(actwindow)
with open(outName, 'a+') as f:
print(f"Lower Limit of Detection Analysis on {dt} at {tm}\n", file=f)
for i, tars in enumerate(targets):
data[tars] = stripThousands(data[tars])
# logans = checkyn(f"Analyze {tars} using log10(concentration/quantity)? (y/n): ")
for idx, val in enumerate(qtys):
tables[i,idx,2] = hitrate(val,data,tars)
tables[i,idx,3] = norm.ppf(tables[i,idx,2])+5
printtables[tars] = pd.DataFrame(tables[i,:,:], columns=["qty","log_qty","probability","probit"])
# construct dataframes from np.arrays and drop
# rows with infinite probit values:
dftables[tars] = pd.DataFrame(tables[i,:,:], columns=["qty","log_qty","probability","probit"])
dftables[tars].probit.replace([np.inf,-np.inf],np.nan, inplace=True)
dftables[tars].dropna(inplace=True)
r2, lod, eqn, logreg = drawplots(axs[i], dftables[tars], cbcolors[i], cbcolors[i+5])
Upvotes: 0
Views: 1013
Reputation: 41327
You should clear the axes in each iteration using pyplot.cla()
.
You posted a lot of code, so I'm not 100% sure of the best location to place it in your code, but the general idea is to clear the axes before each new plot.
Here is a minimal demo without cla()
:
x = [[1,2,3], [3,2,1]]
fig, ax = plt.subplots()
for index, data in enumerate(x):
ax.plot(data)
And with cla()
:
for index, data in enumerate(x):
ax.cla()
ax.plot(data)
Upvotes: 1