Reputation: 25
I have two tables, Table 1 and 2
Table is given as thus
Table1 = read.table( textConnection("TimeString P3 P5 P7 P9 P11
202101152300 19.52 51.32 56.37 60.26 71.37
202101160000 19.52 51.32 56.37 60.26 71.37
202101160100 19.52 51.32 56.37 60.26 71.37
202101160200 19.52 51.32 56.37 60.26 71.37
202101160300 19.52 51.32 56.37 60.26 71.37
202101160400 19.52 51.32 56.37 60.26 71.37
202101160500 19.76 51.68 56.77 60.67 71.79
202101160600 19.76 51.68 56.77 60.67 71.79
202101160700 19.54 51.12 56.16 60.01 71.01
202101160800 19.54 51.12 56.16 60.01 71.01
202101160900 25.45 51.12 56.16 60.01 71.01
202101161000 25.45 51.12 56.16 60.01 71.01
202101161100 25.45 51.12 56.16 60.01 71.01
202101161200 25.45 51.12 56.16 60.01 71.01
202101161300 25.45 51.12 56.16 60.01 71.01
202101161400 25.45 51.12 56.16 60.01 71.01
202101161500 25.45 51.12 56.16 60.01 71.01
202101161600 25.45 54.08 59.11 75.78 105.49
202101161700 25.45 54.08 59.11 75.78 105.49
202101161800 25.45 54.08 59.11 75.78 105.49
202101161900 25.45 51.12 56.16 60.01 71.01
202101162000 25.45 51.12 56.16 60.01 71.01
202101162100 25.45 51.12 56.16 60.01 71.01
202101162200 25.73 51.68 56.77 60.67 71.79
" ), header = T)
Table 2 which is a very large table but a snippet is given as
Table2 = read.table(textConnection("PNumber StartTimeString Modified
3 202101152300 TRUE
5 202101152300 TRUE
7 202101152300 TRUE
9 202101152300 TRUE
11 202101152300 TRUE
3 202101160000 TRUE
5 202101160000 TRUE
7 202101160000 TRUE
9 202101160000 TRUE
11 202101160000 TRUE
3 202101160100 TRUE
5 202101160100 TRUE
7 202101160100 TRUE
9 202101160100 TRUE
11 202101160100 TRUE
3 202101160200 TRUE
5 202101160200 TRUE
7 202101160200 TRUE
9 202101160200 TRUE
11 202101160200 TRUE
3 202101160300 TRUE
5 202101160300 TRUE
7 202101160300 TRUE
9 202101160300 TRUE
11 202101160300 TRUE
3 202101160400 TRUE
5 202101160400 TRUE
7 202101160400 TRUE
"),header = T)
Now I need to bring the numbers from Table 1 into Table2 by matching: both Time Strings ("TimeString" column in Table 1 and "StartTimeString" column in Table 2) AND Column names of Table1 with the concatenation of letter "P" and values "PNumber" Column in Table2
I solved it in Excel using the formula and converting table 2 to an Excel Table
=IF([@Modified],INDEX(Sheet1!$C$4:$G$27,MATCH([@StartTimeString],Sheet1!$B$4:$B$27,0),MATCH("P"&[@PNumber],Sheet1!$C$3:$G$3,0)),"")
The Result was (and this is the result I am expecting)
read.table(textConnection("PTrue
19.52
51.32
56.37
60.26
71.37
19.52
51.32
56.37
60.26
71.37
19.52
51.32
56.37
60.26
71.37
19.52
51.32
56.37
60.26
71.37
19.52
51.32
56.37
60.26
71.37
19.52
51.32
56.37
"),header = T)
In converting the Excel code to R,I created new columns by first pasting the value of PNumber and Letter "P" then creating a match column and finally converting the returned value to numeric
Table2$PNumberconcat = paste0("P",Table2$PNumber)
Table2$Match = ifelse(Table2$StartTimeString %in% Table1$TimeString,match(Table2$PNumberconcat,names(Table1)),"")
Table2$Match = as.numeric(Table2$Match)
After this I tried looping through this but it doesn't seem to work - I am getting an empty column, what am I missing?
for(i in nrow(Table2)) {
for(j in nrow(Table1)){
Table2$PTrue[i] = ifelse(Table2$StartTimeString[i] %in% Table1$TimeString,Table1[j,Table2$Match[i]],"")
}
}
You can use any other process different from mine. Thanks in advance
Upvotes: 2
Views: 100
Reputation: 389055
You can do this with match
:
rowindex <- match(Table2$StartTimeString, Table1$TimeString)
columnindex <- match(paste0("P",Table2$PNumber), names(Table1))
Table2$PTrue <- Table1[cbind(rowindex, columnindex)]
It returns :
Table2
# PNumber StartTimeString Modified PTrue
#1 3 202101152300 TRUE 19.52
#2 5 202101152300 TRUE 51.32
#3 7 202101152300 TRUE 56.37
#4 9 202101152300 TRUE 60.26
#5 11 202101152300 TRUE 71.37
#6 3 202101160000 TRUE 19.52
#7 5 202101160000 TRUE 51.32
#8 7 202101160000 TRUE 56.37
#9 9 202101160000 TRUE 60.26
#10 11 202101160000 TRUE 71.37
#11 3 202101160100 TRUE 19.52
#12 5 202101160100 TRUE 51.32
#13 7 202101160100 TRUE 56.37
#14 9 202101160100 TRUE 60.26
#15 11 202101160100 TRUE 71.37
#16 3 202101160200 TRUE 19.52
#17 5 202101160200 TRUE 51.32
#18 7 202101160200 TRUE 56.37
#19 9 202101160200 TRUE 60.26
#20 11 202101160200 TRUE 71.37
#21 3 202101160300 TRUE 19.52
#22 5 202101160300 TRUE 51.32
#23 7 202101160300 TRUE 56.37
#24 9 202101160300 TRUE 60.26
#25 11 202101160300 TRUE 71.37
#26 3 202101160400 TRUE 19.52
#27 5 202101160400 TRUE 51.32
#28 7 202101160400 TRUE 56.37
Upvotes: 1