Reputation: 23
I'd like to plot EEG data and get this result:
But I am stuck on how to display the x
axis label and its xlim
.
After reading other questions, which use set_visible(False)
, I cannot resolve my issue.
I write my code in order to be reproducible:
sfreq = 256
raw_data = np.random.rand(14, 1000 * sfreq)
duration = 10 # duration of the signal
start = 200 * sfreq
final = start + int(sfreq * duration)
channels = list(np.arange(1, len(channels) + 1 ))
fig, ax = plt.subplots(len(channels), 1, sharex=True, figsize=(10, 10))
for idx, node in enumerate(channels):
data = raw_data[idx, start:final]
times = np.arange(1, data.size + 1) / sfreq
ax[idx].plot(times, data, lw=1., ls='-', c='k')
ax[idx].axis('off') # to remove bounding subplot
ax[idx].set_yticks([]) # to remove values from y axis
ax[idx].text(-1, 0, node, fontsize=12) # write text
# plt.axis(True)
# plt.axes().get_xaxis().set_visible(True)
# plt.xlim([200, 220])
plt.xlabel('Time (seconds)', fontsize=12)
plt.tight_layout()
plt.show()
This is my result:
But I'd like this:
Upvotes: 1
Views: 325
Reputation: 80289
Here are some possible changes to the plot:
zip
instead of an index in the for
loopaxis('off')
import matplotlib.pyplot as plt
import numpy as np
sfreq = 256
raw_data = np.random.rand(14, 1000 * sfreq)
duration = 10 # duration of the signal
start = 200 * sfreq
final = start + int(sfreq * duration)
channels = np.arange(len(raw_data)) + 1
fig, axs = plt.subplots(len(channels), 1, sharex=True, figsize=(10, 10))
for ax, node, data in zip(axs, channels, raw_data):
data = data[start:final]
times = np.arange(1, data.size + 1) / sfreq
ax.plot(times, data, lw=1., ls='-', c='k')
ax.set_yticks([]) # remove y ticks
for sp in ax.spines:
ax.spines[sp].set_visible(False) # hide the 4 lines surrounding the subplot
ax.text(-0.01, 0.5, node, fontsize=12, ha='right', va='center', transform=ax.transAxes) # write text
ax.margins(x=0) # avoid the empty space left and right
if ax != axs[-1]:
# ax.tick_params(axis='x', length=0) # hide the tick marks
ax.tick_params(bottom=False) # no tick marks at the bottom
axs[-1].set_xlabel('Time (seconds)', fontsize=12, labelpad=-10) # use negative padding to get closer to the xaxis
axs[-1].set_xticks([0, duration])
axs[-1].set_xticklabels([start // sfreq, final // sfreq])
axs[-1].spines['bottom'].set_bounds([0, duration]) # only draw the spine between the two ticks
axs[-1].spines['bottom'].set_visible(True)
axs[-1].spines['bottom'].set_linewidth(2)
plt.tight_layout()
plt.show()
Upvotes: 1