Reputation: 13
JSON file added: [JSON file][https://drive.google.com/file/d/1JXaalZ4Wu_1bQACrf8eNlIx80zvjopFr/view]
I am analyzing tweets with a specific hashtag and I don't know how can I deal with the error below, I appreciate your help . Error message is coming from the row
tweet = json.loads(line)
when I run the code I receive error message below JSONDecodeError: Expecting value: line 2 column 1 (char 1)
the error is shown in this cell ( tweet = json.loads(line)) [image of error][2]
My code:
# import tweepy library to access Twitter REST APIs service
import tweepy
#Python code to get twitter access
#Authorize access to Twitter using access keys & tokens from my developer account using tweepy OAuthHandler method
from tweepy import OAuthHandler
import tweepy as tw
consumer_key=''
consumer_secret=''
access_token=''
access_token_secret=''
#online authuntication
auth = tweepy.OAuthHandler(consumer_key,consumer_secret)
auth.set_access_token(access_token,access_token_secret)
api = tweepy.API(auth) #The api variable is now our entry point for most of the operations we can perform with Twitter.
api = tweepy.API(auth, wait_on_rate_limit = True, wait_on_rate_limit_notify = True)
#Source: https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/
from tweepy import Stream
from tweepy.streaming import StreamListener
class MyListener(StreamListener):
def on_data(self, data):
try:
with open('python.json', 'a') as f:
f.write(data)
return True
except BaseException as e:
print("Error on_data: %s" % str(e))
return True
def on_error(self, status):
print(status)
return True
twitter_stream = Stream(auth, MyListener())
twitter_stream.filter(track=['#covid19'])
from google.colab import files
uploaded = files.upload()
#Source: https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/
import json
file='/content/python.json'
with open(file, 'r') as f:
line = f.readline() # read only the first tweet/line
tweet = json.loads(line) # load it as Python dict
# https://marcobonzanini.com/2015/03/09/mining-twitter-data-with-python-part-2/
import re
#define a variable to identify emotions
emoticons_str = r"""
(?:
[:=;] # Eyes
[oO\-]? # Nose (optional)
[D\)\]\(\]/\\OpP] # Mouth
)"""
#define a list to identify emotions,HTML tags, mentions, hashtags, URLs, numbers, words with - and ', other words and anything else
regex_str = [
emoticons_str,
r'<[^>]+>', # HTML tags
r'(?:@[\w_]+)', # @-mentions
r"(?:\#+[\w_]+[\w\'_\-]*[\w_]+)", # hash-tags
r'http[s]?://(?:[a-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+', # URLs
r'(?:(?:\d+,?)+(?:\.?\d+)?)', # numbers
r"(?:[a-z][a-z'\-_]+[a-z])", # words with - and '
r'(?:[\w_]+)', # other words
r'(?:\S)' # anything else
]
#re.VERBOSE, to allow spaces in the regexp to be ignored
#re.IGNORECASE to catch both upper and lowercases
tokens_re = re.compile(r'('+'|'.join(regex_str)+')', re.VERBOSE | re.IGNORECASE)
emoticon_re = re.compile(r'^'+emoticons_str+'$', re.VERBOSE | re.IGNORECASE)
#The tokenize() function simply catches all the tokens in a string and returns them as a list
def tokenize(s):
return tokens_re.findall(s)
#preprocess(), which is used as a pre-processing chain: in this case we simply add a lowercasing feature for all the tokens that are not emoticons
def preprocess(s, lowercase=False):
tokens = tokenize(s)
if lowercase:
tokens = [token if emoticon_re.search(token) else token.lower() for token in tokens]
return tokens
#remove stop words
from nltk.corpus import stopwords
import string
import nltk
nltk.download('stopwords')
punctuation = list(string.punctuation)
stop = stopwords.words('english') + punctuation + ['rt', 'via']
terms_stop = [term for term in preprocess(tweet['text']) if term not in stop]
import re
import operator
import json
from collections import Counter
from nltk.corpus import stopwords
from nltk import bigrams
import string
from collections import defaultdict
import sys
com = defaultdict(lambda: defaultdict(int))
fname = '/content/python.json'
with open(fname, 'r') as f:
count_all = Counter()
for line in f:
tweet = json.loads(line)
terms_only = [term for term in preprocess(tweet['text']) if term not in stop and not term.startswith(('@', '#'))]
count_all.update(terms_only)
print(count_all.most_common(15))
[1]: https://drive.google.com/file/d/1JXaalZ4Wu_1bQACrf8eNlIx80zvjopFr/view
[2]: https://i.sstatic.net/XF1zI.png
Upvotes: 0
Views: 7404
Reputation: 168
You should read all the file when you load json from file, see load()
link to the documentation
fname = '/content/python.json'
with open(fname, 'r') as f:
for line in f.readlines():
if line.startswith('{'):
tweet = json.loads(line)
also use this code to search for more errors
fname = '/content/python.json'
with open(fname, 'r') as f:
for line in f.readlines():
if line.startswith('{'):
try:
json.loads(line)
except json.JSONDecodeError as e:
print(e.msg, e)
print(repr(line))
Upvotes: 1