Reputation: 85
I have a dataframe of 10,000 rows that I am trying to sum all possible combinations of those rows. According to my math, that's about 50 million combinations. I'll give a small example to simplify what my data looks like:
df = Ratio Count Score
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15
And here's the desired result:
results = Min Ratio Max Ratio Total Count Total Score
1 2 13 23
1 3 21 36
1 4 30 50
1 5 40 65
2 3 15 25
2 4 24 39
2 5 34 54
3 4 17 27
3 5 27 42
4 5 19 29
This is the code that I came up with to complete the calculation:
for i in range(len(df)):
j = i + 1
while j <= len(df):
range_to_calc = df.iloc[i:j]
total_count = range_to_calc['Count'].sum()
total_score = range_to_calc['Score'].sum()
new_row = {'Min Ratio': range_to_calc.at[range_to_calc.first_valid_index(),'Ratio'],
'Max Ratio': range_to_calc.at[range_to_calc.last_valid_index(),'Ratio'],
'Total Count': total_count,
'Total Score': total_score}
results = results.append(new_row, ignore_index=True)
j = j + 1
This code works, but according to my estimates after running it for a few minutes, it would take 200 hours to complete. I understand that using numpy would be a lot faster, but I can't wrap my head around how to build multiple arrays to add together. (I think it would be easy if I was doing just 1+2, 2+3, 3+4, etc., but it's a lot harder because I need 1+2, 1+2+3, 1+2+3+4, etc.) Is there a more efficient way to complete this calculation so it can run in a reasonable amount of time? Thank you!
P.S.: If you're wondering what I want to do with a 50 million-row dataframe, I don't actually need that in my final results. I'm ultimately looking to divide the Total Score of each row in the results by its Total Count to get a Total Score Per Total Count value, and then display the 1,000 highest Total Scores Per Total Count, along with each associated Min Ratio, Max Ratio, Total Count, and Total Score.
Upvotes: 6
Views: 1445
Reputation: 47
Sorry to write late for this topic, but I'm just looking for a solution for a similar topic. The solution for this issue is simple because the combination is only in pairs. This is solved by uploading the dataframe to any DB and executing the following query whose duration is less than 10 seconds:
SEL f1.*,f2.*,f1.score+f2.score
FROM table_with_data_source f1, table_with_data_source f2
where f1.ratio<>f2.ratio;
The database will do it very fast even if there are 100,000 records or more.
However, none of the algorithms that I saw in the answers, actually perform a combinatorial of values. He only does it in pairs. The problem really gets complicated when it's a true combinatorial, for example:
Given: a, b, c, d and e as records:
a
b
c
d
e
The real combination would be:
a+b
a+c
a+d
a+e
a+b+c
a+b+d
a+b+e
a+c+d
a+c+e
a+d+e
a+b+c+d
a+b+c+e
a+c+d+e
a+b+c+d+e
b+c
b+d
b+e
b+c+d
b+c+e
b+d+e
c+d
c+e
c+d+e
d+e
This is a real combinatorial, which covers all possible combinations. For this case I have not been able to find a suitable solution since it really affects the performance of any HW. Anyone have any idea how to perform a real combinatorial using python? At the database level it affects the general performance of the database.
Upvotes: 0
Reputation: 2128
After these improvements it takes ~2 minutes to run for 10k rows.
For the sum computation, you can pre-compute cumulative sum(cumsum)
and save it. sum(i to j)
is equal to sum(0 to j) - sum(0 to i-1)
.
Now sum(0 to j)
is cumsum[j]
and sum(0 to i - 1)
is cumsum[i-1]
.
So sum(i to j) = cumsum[j] - cumsum[i - 1]
.
This gives significant improvement over computing sum each time for different combination.
Operation over numpy
array is faster than the operation on pandas series, hence convert every colum to numpy array and then do the computation over it.
(From other answers): Instead of appending in list, initialise an empty numpy array of size ((n*(n+1)//2) -n , 4)
and use it to save the results.
Use:
count_cumsum = np.cumsum(df.Count.values)
score_cumsum = np.cumsum(df.Score.values)
ratios = df.Ratio.values
n = len(df)
rowInCombination = (n * (n + 1) // 2) - n
arr = np.empty(shape = (rowInCombination, 4), dtype = int)
k = 0
for i in range(len(df)):
for j in range(i + 1, len(df)):
arr[k, :] = ([
count_cumsum[j] - count_cumsum[i-1] if i > 0 else count_cumsum[j],
score_cumsum[j] - score_cumsum[i-1] if i > 0 else score_cumsum[j],
ratios[i],
ratios[j]])
k = k + 1
out = pd.DataFrame(arr, columns = ['Total_Count', 'Total_Score',
'Min_Ratio', 'Max_Ratio'])
Input:
df = pd.DataFrame({'Ratio': [1, 2, 3, 4, 5],
'Count': [6, 7, 8, 9, 10],
'Score': [11, 12, 13, 14, 15]})
Output:
>>>out
Min_Ratio Max_Ratio Total_Count Total_Score
0 1 2 13 23
1 1 3 21 36
2 1 4 30 50
3 1 5 40 65
4 2 3 15 25
5 2 4 24 39
6 2 5 34 54
7 3 4 17 27
8 3 5 27 42
9 4 5 19 29
Upvotes: 3
Reputation: 93191
Others have explained why your algorithm was so slow so I will dive into that.
Let's take a different approach to your problem. In particular, look at how the Total Count
and Total Score
columns are calculated:
Since cumulative sums are accumulative, we only need to calculate it once for row 1 to row n:
In other words, the current cumsum is the previous cumsum minus its first row, then dropping the first row.
As you have theorized, pandas is a lot slower than numpy so we will convert everthing into numpy for speed:
arr = df[['Ratio', 'Count', 'Score']].to_numpy() # Convert to numpy array
tmp = np.cumsum(arr[:, 1:3], axis=0) # calculate cumsum for row 1 to n
tmp = np.insert(tmp, 0, arr[0, 0], axis=1) # create the Min Ratio column
tmp = np.insert(tmp, 1, arr[:, 0], axis=1) # create the Max Ratio column
results2 = [tmp]
for i in range(1, len(arr)):
tmp = results2[-1][1:] # current cumsum is the previous cumsum without the first row
diff = results2[-1][0] # the previous cumsum's first row
tmp -= diff # adjust the current cumsum
tmp[:, 0] = arr[i, 0] # new Min Ratio
tmp[:, 1] = arr[i:, 0] # new Max Ratio
results2.append(tmp)
# Assemble the result
results2 = np.concatenate(results2).reshape(-1,4)
results2 = pd.DataFrame(results2, columns=['Min Ratio', 'Max Ratio', 'Total Count', 'Total Score'])
During my test, this produces the results for a 10k row data frame in about 2 seconds.
Upvotes: 3
Reputation: 50826
First of all, you can improve the algorithm. Then, you can speed up the computation using Numpy vectorization/broadcasting.
Here are the interesting point to improve the performance of the algorithm:
append
of Pandas is slow because it recreate a new dataframe. You should never use it in a costly loop. Instead, you can append the lines to a Python list or even directly write the items in a pre-allocated Numpy vector.O(n)
time while you can pre-compute the cumulative sums and then just find the partial sum in constant time.Here is the resulting code:
import numpy as np
import pandas as pd
def fastImpl(df):
n = len(df)
resRowCount = (n * (n+1)) // 2
k = 0
cumCounts = np.concatenate(([0], df['Count'].astype(int).cumsum()))
cumScores = np.concatenate(([0], df['Score'].astype(int).cumsum()))
ratios = df['Ratio'].astype(int)
minRatio = np.empty(resRowCount, dtype=int)
maxRatio = np.empty(resRowCount, dtype=int)
count = np.empty(resRowCount, dtype=int)
score = np.empty(resRowCount, dtype=int)
for i in range(n):
kStart, kEnd = k, k+(n-i)
jStart, jEnd = i+1, n+1
minRatio[kStart:kEnd] = ratios[i]
maxRatio[kStart:kEnd] = ratios[i:n]
count[kStart:kEnd] = cumCounts[jStart:jEnd] - cumCounts[i]
score[kStart:kEnd] = cumScores[jStart:jEnd] - cumScores[i]
k = kEnd
assert k == resRowCount
return pd.DataFrame({
'Min Ratio': minRatio,
'Max Ratio': maxRatio,
'Total Count': count,
'Total Score': score
})
Note that this code give the same results than the code in your question, but the original code does not give the expected results stated in the question. Note also that since inputs are integers, I forced Numpy to use integers for sake of performance (despite the algorithm should work with floats too).
This code is hundreds of thousand times faster than the original code on big dataframes and it succeeds to compute a dataframe of 10,000 rows in 0.7 second.
Upvotes: 3