Reputation: 53
im new to Pytorch and DL in genereal, so i hope this is the right place to ask questions like this.
I wanted to create my first Dataset, but my Dataset always runs out of bound. This problem should be easiest to show with the codes and outputs.
class DataframeDataset(torch.utils.data.Dataset):
"""Load Pytorch Dataset from Dataframe
"""
def __init__(self, data_frame, input_key, target_key, transform=None, features=None):
self.data_frame = data_frame
self.input_key = input_key
self.target_key = target_key
self.inputs = self.data_frame[input_key]
self.targets = self.data_frame[target_key]
self.transform = transform
self.features = [input_key, target_key] if features is None else features
self.len = len(self.inputs)
def __len__(self):
return self.len
def __str__(self):
return str(self.info())
def info(self):
info = {
'features': self.features,
'num_rows': len(self)
}
return "Dataset("+ str(info) + ")"
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
data = {
self.input_key: self.inputs[idx],
self.target_key: self.targets[idx]
}
if self.transform:
return self.transform(data)
return data
@staticmethod
def collate_fn(input_key, output_key):
def __call__(batch):
speeches = [data[input_key] for data in batch]
sentences = [data[output_key] for data in batch]
return speeches, sentences
return __call__
with some mook data:
data = [("x1", "y2", "A3"), ("x1", "y2", "b3"), ("x1", "y2", "c3"), ("x1", "y2", "d3")]
df = pd.DataFrame(data, columns=['input', 'target', 'random'])
print(df.head())
input target random
0 x1 y2 A3
1 x1 y2 b3
2 x1 y2 c3
3 x1 y2 d3
ds = DataframeDataset(data_frame=df, input_key="input", target_key="target", transform=None)
print("Len:", len(ds))
print("Ds", ds)
print(ds[0])
Len: 4
Ds Dataset({'features': ['input', 'target'], 'num_rows': 4})
{'input': 'x1', 'target': 'y2'}
So the basic functions seem to work. However, if I want to iterate over the data with a foreach loop, then unfortunately the loop does not know the boundaries. So I get a key-error, because the torch accesses indicies outside the boundary.
for idx, data in enumerate(ds):
print(idx,"->",data)
0 -> {'input': 'x1', 'target': 'y2'}
1 -> {'input': 'x1', 'target': 'y2'}
2 -> {'input': 'x1', 'target': 'y2'}
3 -> {'input': 'x1', 'target': 'y2'}
Traceback (most recent call last):
File "/home/warmachine/.local/lib/python3.8/site-packages/pandas/core/indexes/range.py", line 351, in get_loc
return self._range.index(new_key)
ValueError: 4 is not in range`
If i do something like
for idx in range(0, len(ds)):
data = ds[idx]
print(idx, "->", data)
it works, but i need to be able to use the for-each
Style, so that i can use this Dataset within the Trainer of Hugging Face.
Ty in advcanded
Upvotes: 2
Views: 325
Reputation: 1002
If you want to use Foreach loops, you must implement an Iterator function. Here is an example from PyTorch:
https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset
Slightly modified, works for me.
class DataframeDataset(torch.utils.data.Dataset):
...
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
return map(self.__getitem__, range(self.__len__()))
per_worker = int(math.ceil((self.__len__()) / float(worker_info.num_workers)))
worker_id = worker_info.id
iter_start = worker_id * per_worker
iter_end = min(iter_start + per_worker, self.__len__())
return map(self.__getitem__, range(iter_start, iter_end))
Upvotes: 1