Reputation: 2038
I am trying to read a piece of Rust assembly code, but actually, it's harder to read than the ASM code generated by the C/C++ compiler. So, how to analyze the ASM code of the below piece of Rust code?
fn main() {
let closure = |x| println!("{}", x);
let x: fn(x: i32) -> () = closure;
println!("{}", x as i32);
}
The corresponding assembly code like below with some comments (I only pasted the main part, for full version please use this Permalink: https://play.rust-lang.org/?version=nightly&mode=release&edition=2018&gist=e7ba4844f1ce6e881912dc074152988d):
playground::main: # @playground::main
# %bb.0:
subq $72, %rsp
leaq core::ops::function::FnOnce::call_once(%rip), %rax
movl %eax, 4(%rsp)
leaq 4(%rsp), %rax
movq %rax, 8(%rsp)
movq core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
movq %rax, 16(%rsp)
leaq .L__unnamed_2(%rip), %rax # the contents of rdx come from .L__unnamed_2(%rip), how to evaluate this part?
movq %rax, 24(%rsp) # the contents of rdi come from rax.
movq $2, 32(%rsp)
movq $0, 40(%rsp)
leaq 8(%rsp), %rax
movq %rax, 56(%rsp)
movq $1, 64(%rsp)
leaq 24(%rsp), %rdi # rdi should be the register holding the value passed to println!.
callq *std::io::stdio::_print@GOTPCREL(%rip)
addq $72, %rsp
retq
# -- End function
main: # @main
# %bb.0:
subq $8, %rsp
movq %rsi, %rcx
movslq %edi, %rdx
leaq playground::main(%rip), %rax
movq %rax, (%rsp)
leaq .L__unnamed_1(%rip), %rsi
movq %rsp, %rdi
callq *std::rt::lang_start_internal@GOTPCREL(%rip)
# kill: def $eax killed $eax killed $rax
popq %rcx
retq
# -- End function
.L__unnamed_1:
.quad core::ptr::drop_in_place<std::rt::lang_start<()>::{{closure}}>
.quad 8 # 0x8
.quad 8 # 0x8
.quad std::rt::lang_start::{{closure}}
.quad std::rt::lang_start::{{closure}}
.quad core::ops::function::FnOnce::call_once{{vtable.shim}}
.L__unnamed_3:
.L__unnamed_4:
.byte 10
.L__unnamed_2:
.quad .L__unnamed_3
.zero 8
.quad .L__unnamed_4
.asciz "\001\000\000\000\000\000\000"
And, I am trying to find how the Rust compiler treats the function pointer of closure versus normal function. So, here I tried to use a closure as an example but seems I cannot find any valid assembly code that corresponds to the use of the variable "x".
Upvotes: 2
Views: 926
Reputation: 1660
There is no actual call to the closure, so no invocation code has been produced, but the use of the x variable is actually in a function not included in your post which has the misleading name of core::ops::function::FnOnce::call_once
in the ASM output, but has the much more mangled name of @_ZN4core3ops8function6FnOnce9call_once17hefa1aa47132c4122E
in the LLVM output of the same playground example. This is the actual contents of the closure (the println!("{}", x)
)
core::ops::function::FnOnce::call_once: # @core::ops::function::FnOnce::call_once
# %bb.0:
# allocate a bunch of stack space for variables and print arguments
subq $72, %rsp
# %edi has the value of x passed in to the closure, which we store in a new stack allocated variable
movl %edi, 4(%rsp)
# we then load the address of that variable into another variable
leaq 4(%rsp), %rax
movq %rax, 8(%rsp)
# the following is mostly populating the std::fmt::Arguments struct which is passed to print
movq core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
movq %rax, 16(%rsp)
leaq .L__unnamed_2(%rip), %rax
movq %rax, 24(%rsp)
movq $2, 32(%rsp)
movq $0, 40(%rsp)
# the address of the address of x is loaded into the arguments struct here
leaq 8(%rsp), %rax
movq %rax, 56(%rsp)
# finish populating the arguments and then call print
movq $1, 64(%rsp)
leaq 24(%rsp), %rdi
callq *std::io::stdio::_print@GOTPCREL(%rip)
addq $72, %rsp
retq
The playground main function is where the closure is created, but it's not actually called, and like the function above, is mostly populating the complex std::fmt::Arguments struct
playground::main: # @playground::main
# %bb.0:
subq $72, %rsp
# this creates the closure by storing a pointer to the closure's function
leaq core::ops::function::FnOnce::call_once(%rip), %rax
movl %eax, 4(%rsp)
# this stores the closure in main's `x` variable (line 3 of the example)
leaq 4(%rsp), %rax
movq %rax, 8(%rsp)
# populate the std::fmt::Arguments struct
movq core::fmt::num::imp::<impl core::fmt::Display for i32>::fmt@GOTPCREL(%rip), %rax
movq %rax, 16(%rsp)
leaq .L__unnamed_2(%rip), %rax # the contents of rdx come from .L__unnamed_2(%rip), how to evaluate this part?
movq %rax, 24(%rsp) # the contents of rdi come from rax.
movq $2, 32(%rsp)
movq $0, 40(%rsp)
# store the closure (stored in `x`) in the std::fmt::Arguments struct
leaq 8(%rsp), %rax
movq %rax, 56(%rsp)
# finish populating and call print
movq $1, 64(%rsp)
leaq 24(%rsp), %rdi # rdi should be the register holding the value passed to println!.
callq *std::io::stdio::_print@GOTPCREL(%rip)
addq $72, %rsp
retq
From the LLVM output, the std::fmt::Arguments is defined as %"std::fmt::Arguments" = type { [0 x i64], { [0 x { [0 x i8]*, i64 }]*, i64 }, [0 x i64], { i64*, i64 }, [0 x i64], { [0 x { i8*, i64* }]*, i64 }, [0 x i64] }
and I don't understand too many of the internal details, so I'm not sure exactly why it's referencing the the static memory area .L__unnamed_2 but digging into std::fmt::Arguments might give some more clues
Upvotes: 5