Reputation: 7621
Consider this JSON input (shown in multiline form for readability but the actual input docs are one-line CR-delimited):
{
"common": { "type":"A", "date":"2020-01-01T12:00:00" },
"data": {
"name":"Dave",
"pets": [ "dog", "cat" ]
}
}
{
"common": { "type": "B", "date":"2020-01-01T12:00:00" },
"data": {
"whatever": { "X": {"foo":3}, "Y":"bar" },
"favoriteInts": [ 0, 1, 7]
}
}
I am familiar with json-schema
and the way I can describe that the data
substructure can be either name,pets
OR whatever,favoriteInts
. We
use the common.type
field to runtime identify the type.
Is this possible in SPARK schema definition? Initial experiments along the lines of:
schema = StructType([
StructField("common", StructType(common_schema)), # .. because the type is consistent
StructField("data", StructType()) # attempting to declare a "generic" struct
])
df = spark.read.option("multiline", "true").json(source, schema)
does not work; upon read where the data
struct contains, well, anything but in this particular example 2 fields, we get:
+--------------------+----+
| common|data|
+--------------------+----+
|{2020-01-01T12:00...| {}|
+--------------------+----+
and trying to extract any named field yields No such struct field <whatever>
. Leaving the "generic struct" out of the schema
def entirely yields a dataframe without any field named data
, never mind the fields within.
Beyond this, I ultimately seek to do something like this:
df = spark.read.json(source)
def processA(frame):
frame.select( frame.data.name ) # we KNOW name exists for type A
...
def processB(frame):
frame.select( frame.data.favoriteInts ) # we KNOW favoriteInts exists for type B
...
processA( df.filter(df.common.type == "A") )
processB( df.filter(df.common.type == "B") )
Upvotes: 1
Views: 238
Reputation: 10035
You may use nested and nullable types (by specifying True
) in the struct to accommodate for the uncertainty.
from pyspark.sql.types import StructType, StringType, ArrayType, StructField, IntegerType
data_schema = StructType([
# Type A related attributes
StructField("name",StringType(),True), # True implies nullable
StructField("pets",ArrayType(StringType()),True),
# Type B related attributes
StructField("whatever",StructType([
StructField("X",StructType([
StructField("foo",IntegerType(),True)
]),True),
StructField("Y",StringType(),True)
]),True), # True implies nullable
StructField("favoriteInts",ArrayType(IntegerType()),True),
])
schema = StructType([
StructField("common", StructType(common_schema)), # .. because the type is consistent
StructField("data", data_schema)
])
Upvotes: 2