Reputation: 2149
I have a dataframe of values that are mostly (but not always) quarterly values.
I need to fill in for any missing months so it is complete.
Here i need to put it into a complete df from 2015-12 to 2021-03.
Thank you.
id date amt rate
0 15856 2015-12-31 85.09 0.0175
1 15857 2016-03-31 135.60 0.0175
2 15858 2016-06-30 135.91 0.0175
3 15859 2016-09-30 167.27 0.0175
4 15860 2016-12-31 173.32 0.0175
....
19 15875 2020-09-30 305.03 0.0175
20 15876 2020-12-31 354.09 0.0175
21 15877 2021-03-31 391.19 0.0175
Upvotes: 1
Views: 34
Reputation: 30070
You can use pd.date_range()
to generate a list of months end with freq='M'
then reindex datetime index.
df_ = df.set_index('date').reindex(pd.date_range('2015-12', '2021-03', freq='M')).reset_index().rename(columns={'index': 'date'})
print(df_)
date id amt rate
0 2015-12-31 15856.0 85.09 0.0175
1 2016-01-31 NaN NaN NaN
2 2016-02-29 NaN NaN NaN
3 2016-03-31 15857.0 135.60 0.0175
4 2016-04-30 NaN NaN NaN
.. ... ... ... ...
58 2020-10-31 NaN NaN NaN
59 2020-11-30 NaN NaN NaN
60 2020-12-31 15876.0 354.09 0.0175
61 2021-01-31 NaN NaN NaN
62 2021-02-28 NaN NaN NaN
To fill the NaN value, you can use df_.fillna(0)
.
Upvotes: 1