Reputation: 33
I'm having trouble combining my Y_test data beside my predicted_tuned data, i've tried every example I could come across yet when I set the index for datetime I seem to still get a big error as NAN for where the index's do not match up, as you can see in the attempt below, which is one of many, there are just as many dates as there are numbers in the df and df2 which I just converted into a df = Y_test
I also tried to set the index to datetime but I still do not get the numbers aligned beside the dates asIi'm looking for,
again to reiterate essentially I am trying to align the two series side by side and set the index as datetime, yet when I do that I get a bunch of NAN values, Thank you in advance for considering to help me on this problem!
pd.concat([df, df2])
179 0.002
180 0.003
181 0.005
182 0.006
183 0.01
...
2021-03-18 00:00:00 0.007
2021-03-25 00:00:00 0.042
2021-04-01 00:00:00 0.054
2021-04-12 00:00:00 0.011
date 179 2.037e-03
180 3.190e-03
181 4.505...
Length: 91, dtype: object
Upvotes: 2
Views: 46
Reputation: 41327
You can rename columns by setting the .columns
attribute. Then to stack side by side, specify axis=1
for concat()
and finally set the index to date
:
df.columns = ['date', 'predicted']
df2.columns = ['date', 'actual']
pd.concat([df, df2], axis=1).set_index('date')
Upvotes: 1
Reputation: 33
The final work around I needed to do was to first rename the columns to 'date' by exporting as csv then reimporting with the following code
df2.to_csv('yo.csv')
colnames=['date', 'actual']
user1 = pd.read_csv('yo.csv', names=colnames, header=None)
df.to_csv('yo1.csv')
colnames=['date', 'predicted']
user2 = pd.read_csv('yo1.csv', names=colnames, header=None)
pd.concat([user1, user2], axis=1).set_index('date')
actual predicted
date
(nan, nan) MSFT_pred 0.000e+00
(2020-04-30 00:00:00, 179.0) 0.024201106326536603 2.037e-03
(2020-05-07 00:00:00, 180.0) -0.01686254903583162 3.190e-03
(2020-05-14 00:00:00, 181.0) 0.018717373876389054 4.505e-03
(2020-05-21 00:00:00, 182.0) -0.000981754619259867 5.655e-03
(2020-05-29 00:00:00, 183.0) 0.02132616076987759 1.038e-02
(2020-06-08 00:00:00, 184.0) 0.0030745362797475195 1.840e-02
(2020-06-15 00:00:00, 185.0) 0.059733833525184465 -8.471e-03
(2020-06-22 00:00:00, 186.0) -0.010676658312346099 1.963e-03
(2020-06-29 00:00:00, 187.0) 0.04825255850145016 1.271e-02
(2020-07-07 00:00:00, 188.0) 0.00048009595166487173 -3.963e-03
(2020-07-15 00:00:00, 189.0) 0.017675967314019658 1.315e-02
(2020-07-22 00:00:00, 190.0) -0.03699223319804901 7.459e-03
(2020-07-29 00:00:00, 191.0) 0.0425963854255107 6.393e-04
(2020-08-05 00:00:00, 192.0) -0.017767412527132542 8.299e-03
(2020-08-12 00:00:00, 193.0) 0.004849289374926791 1.229e-02
(2020-08-19 00:00:00, 194.0) 0.053163269514577394 -7.205e-04
(2020-08-26 00:00:00, 195.0) 0.04638640608165456 -2.941e-03
(2020-09-02 00:00:00, 196.0) -0.12041441937020192 1.215e-03
(2020-09-10 00:00:00, 197.0) -0.012050617841010691 1.572e-02
(2020-09-18 00:00:00, 198.0) 0.03640692855683092 1.282e-02
(2020-09-25 00:00:00, 199.0) -0.007874252996166398 1.493e-03
(2020-10-02 00:00:00, 200.0) 0.04560030760287681 6.036e-03
(2020-10-09 00:00:00, 201.0) 0.017682541657954687 6.680e-03
(2020-10-20 00:00:00, 202.0) -0.006543498136577064 3.152e-03
(2020-10-27 00:00:00, 203.0) -0.03250388362265788 -7.606e-03
(2020-11-03 00:00:00, 204.0) 0.021944140659009292 1.106e-02
(2020-11-10 00:00:00, 205.0) 0.016217814956357657 1.540e-02
(2020-11-19 00:00:00, 206.0) 0.013141777478138827 8.397e-03
(2020-11-30 00:00:00, 207.0) 0.0010271171517945987 9.058e-03
(2020-12-09 00:00:00, 208.0) 0.0347070301815533 1.084e-02
(2020-12-16 00:00:00, 209.0) 0.00790377030467937 3.130e-03
(2020-12-23 00:00:00, 210.0) 0.006314251899552481 6.853e-03
(2021-01-05 00:00:00, 211.0) -0.013723872690842853 7.528e-03
(2021-01-13 00:00:00, 212.0) 0.039115811401939204 1.702e-03
(2021-01-22 00:00:00, 213.0) 0.02625125481157209 -1.252e-02
(2021-02-02 00:00:00, 214.0) 0.01763006225325281 3.198e-03
(2021-02-09 00:00:00, 215.0) 0.0040628812983873885 6.399e-03
(2021-02-17 00:00:00, 216.0) -0.04031875139405816 4.501e-03
(2021-02-25 00:00:00, 217.0) -0.009918495072427369 1.617e-02
(2021-03-04 00:00:00, 218.0) 0.044848671154583464 7.920e-03
(2021-03-11 00:00:00, 219.0) -0.027403675161880692 1.280e-02
(2021-03-18 00:00:00, 220.0) 0.006996940936046414 1.904e-02
(2021-03-25 00:00:00, 221.0) 0.04218118715262609 9.114e-03
(2021-04-01 00:00:00, 222.0) 0.05420837163083725 4.867e-04
(2021-04-12 00:00:00, 223.0) 0.010997824269626477 2.224e-03
(date, nan) 179 2.037e-03\n180 3.190e-03\n181 4.5... NaN
Upvotes: 0