Reputation: 97
I have a big data frame which consists of 1000 data frames (500x500), and I created by following code:
setwd("user/all_csv")
archivos <- list.files(full.names = F)
big.df <- lapply(archivos, read.csv, header = TRUE) %>%
set_names(archivos)%>%
bind_rows(.id = 'grp')
The big.df
looks like below (a small example):
grp X X1 X2 X5
2020_01_19 1 23 47 3
2020_01_19 2 13 45 54
2020_01_19 5 23 41 21
2020_01_20 1 65 32 19
2020_01_20 2 39 52 12
2020_01_20 5 43 76 90
...
How can I generate the output below?:
1-X1 1-X2 1-X5 2-X1 2-X2 2-X5 5-X1 5-X2 5-X5
2020_01_19 23 47 3 13 45 54 23 41 21
2020_01_20 65 32 19 39 52 12 43 76 90
...
I don't really know how to proceed. Any help would be greatly appreciated.
Upvotes: 0
Views: 376
Reputation: 26218
use tidyr::pivot_wider
with names_glue
argument as follows.
cols
values_from = all_of(cols)
as argument in pivot_wider
cols <- c('X1', 'X2', 'X5')
df %>% pivot_wider(id_cols = grp, names_from = X, values_from = all_of(cols),
names_glue = '{X}-{.value}')
# A tibble: 2 x 10
grp `1-X1` `2-X1` `5-X1` `1-X2` `2-X2` `5-X2` `1-X5` `2-X5` `5-X5`
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 2020_01_19 23 13 23 47 45 41 3 54 21
2 2020_01_20 65 39 43 32 52 76 19 12 90
If you want to use all columns except first two, use this
df %>% pivot_wider(id_cols = grp, names_from = X, values_from = !c(grp, X),
names_glue = '{X}-{.value}')
# A tibble: 2 x 10
grp `1-X1` `2-X1` `5-X1` `1-X2` `2-X2` `5-X2` `1-X5` `2-X5` `5-X5`
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 2020_01_19 23 13 23 47 45 41 3 54 21
2 2020_01_20 65 39 43 32 52 76 19 12 90
However, if you want to rearrange columns as shown in expected outcome, you may use names_vary = 'slowest'
in pivot_wider
function of tidyr 1.2.0.
Upvotes: 1