Reputation: 152
I have a generator which I am trying to interleave:
def hello(i):
for j in tf.range(i):
yield j
ds = tf.data.Dataset.range(10).interleave(
lambda ind: tf.data.Dataset.from_generator(lambda: hello(ind), output_types=(tf.int32,)))
for x in ds.take(1):
print(x)
But I get this error:
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
The graph tensor has name: args_0:0
[[{{node PyFunc}}]]
Tensorflow version: 2.3.2
Upvotes: 2
Views: 775
Reputation: 11631
The problem is in the way you are building your generator function. Instead of using a lambda
, you should use the args
keyword argument to specify the argument passed to your generator function.
ds = tf.data.Dataset.range(10).interleave(
lambda ind: tf.data.Dataset.from_generator(
hello, args=(ind,), output_types=tf.int32
)
)
For TF2.4, note that you should use output_signature
instead of output_types
, as the latter is deprecated. (In that case output_signature=tf.TensorSpec(shape=(), dtype=tf.int32,)
).
Upvotes: 2