Reputation: 33
I'm making a barplot using 3 datasets in seaborn, however each datapoint overlays the previous, regardless of if it is now hiding the previous plot. eg:
sns.barplot(x="Portfolio", y="Factor", data=d2,
label="Portfolio", color="g")
sns.barplot(x="Benchmark", y="Factor", data=d2,
label="Benchmark", color="b")
sns.barplot(x="Active Exposure", y="Factor", data=d2,
label="Active", color="r")
ax.legend(frameon=True)
ax.set(xlim=(-.1, .5), ylabel="", xlabel="Sector Decomposition")
sns.despine(left=True, bottom=True)
However, I want it to show green, even if the blue being overlayed is greater. Any ideas?
Upvotes: 3
Views: 5273
Reputation: 7045
Without being able to see your data I can only guess that your dataframe is not in long-form. There's a section on the seaborn tutorial on the expected shape of DataFrames that seaborn is expecting, I'd take a look there for more info, specifically the section on messy data.
Because I can't see your DataFrame I have made some assumptions about it's shape:
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.DataFrame({
"Factor": list("ABC"),
"Portfolio": np.random.random(3),
"Benchmark": np.random.random(3),
"Active Exposure": np.random.random(3),
})
# Active Exposure Benchmark Factor Portfolio
# 0 0.140177 0.112653 A 0.669687
# 1 0.823740 0.078819 B 0.072474
# 2 0.450814 0.702114 C 0.039068
We can melt this DataFrame to get the long-form data seaborn wants:
d2 = df.melt(id_vars="Factor", var_name="exposure")
# Factor exposure value
# 0 A Active Exposure 0.140177
# 1 B Active Exposure 0.823740
# 2 C Active Exposure 0.450814
# 3 A Benchmark 0.112653
# 4 B Benchmark 0.078819
# 5 C Benchmark 0.702114
# 6 A Portfolio 0.669687
# 7 B Portfolio 0.072474
# 8 C Portfolio 0.039068
Then, finally we can plot out box plot using the seaborn's builtin aggregations:
ax = sns.barplot(x="value", y="Factor", hue="exposure", data=d2)
ax.set(ylabel="", xlabel="Sector Decomposition")
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
Which produces:
Here's the plot params I used to make this chart:
import matplotlib as mpl
# Plot configuration
mpl.style.use("seaborn-pastel")
mpl.rcParams.update(
{
"font.size": 14,
"figure.facecolor": "w",
"axes.facecolor": "w",
"axes.spines.right": False,
"axes.spines.top": False,
"axes.spines.bottom": False,
"xtick.top": False,
"xtick.bottom": False,
"ytick.right": False,
"ytick.left": False,
}
)
If you are fine without using seaborn you can use pandas
plotting to create a stacked horizontal bar chart (barh
):
import pandas as pd
import matplotlib as mpl
# Plot configuration
mpl.style.use("seaborn-pastel")
mpl.rcParams.update(
{
"font.size": 14,
"figure.facecolor": "w",
"axes.facecolor": "w",
"axes.spines.right": False,
"axes.spines.top": False,
"axes.spines.bottom": False,
"xtick.top": False,
"xtick.bottom": False,
"ytick.right": False,
"ytick.left": False,
}
)
df = pd.DataFrame({
"Factor": list("ABC"),
"Portfolio": [0.669687, 0.072474, 0.039068],
"Benchmark": [0.112653, 0.078819, 0.702114],
"Active Exposure": [0.140177, 0.823740, 0.450814],
}).set_index("Factor")
ax = df.plot.barh(stacked=True)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax.set_ylabel("")
ax.set_xlabel("Sector Decomposition")
Notice in the code above the index is set to Factor
which then becomes the y axis.
If you don't set stacked=True
you get almost the same chart as seaborn produced:
ax = df.plot.barh(stacked=False)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax.set_ylabel("")
ax.set_xlabel("Sector Decomposition")
Upvotes: 4