Reputation: 1663
I believe this is fairly simply to achieve, but I can't figure out how.
Take the following example class:
class Example {
public:
template <typename T>
size_t foo(T& v) const;
};
How can I provide two implementations for this method depending on if T is a POD? I know there is an std::is_pod type trait, but I can't figure out how to have it enable the correct function.
I also need to be able to provide specific specializations for certain types of T regardless of if they are PODs or not. For example, I want to be able to write:
template <>
size_t foo<uint8_t>(uint8_t& b);
While all other types of T are chosen based upon being PODs or not.
EDIT
I have been looking at the information everyone has been giving and have come up with the following, however, this still does not work (throws a compiler error). I can't understand why.
class Example {
public:
template <typename T, bool U = std::is_trivially_copyable<T>::value>
size_t foo(T& v) const;
};
template <typename T>
size_t Example::foo<T, true>(T& v) const {
//Do something if T is mem copyable
}
template <typename T>
size_t Example::foo<T, false>(T& v) const {
//Do something if T is not mem copyable
}
Which results in "non-class, non-variable partial specialization 'foo<T, true>' is not allowed"
Upvotes: 1
Views: 220
Reputation: 1663
Here is what I did to get it to work correctly:
#include <type_traits>
#include <iostream>
class Example {
public:
Example(int a) : _a(a) {}
virtual void bar() {}
template <typename T, typename std::enable_if<std::is_trivially_copyable<T>::value, size_t>::type = 0>
size_t foo(T& v) const {
std::cout << "T is trivially copyable" << std::endl;
return sizeof(T);
}
template <typename T, typename std::enable_if<!std::is_trivially_copyable<T>::value, size_t>::type = 0>
size_t foo(T& v) const {
std::cout << "T is not trivially copyable" << std::endl;
return sizeof(T);
}
private:
int _a;
int _b;
int _c;
};
template <>
size_t Example::foo<unsigned int>(unsigned int& v) const {
std::cout << "T is unsigned int" << std::endl;
return sizeof(unsigned int);
}
int main() {
Example e(10);
int a;
e.foo(a);
char b;
e.foo(b);
e.foo(e);
unsigned int c;
e.foo(c);
return 0;
}
The output of which looks like:
T is trivially copyable
T is trivially copyable
T is not trivially copyable
T is unsigned int
This is based upon the following Provide/enable method to in a class based on the template type
Upvotes: 0
Reputation: 337
You can do it in the following way.
#include <iostream>
#include <type_traits>
struct A {
int m;
};
struct B {
int m1;
private:
int m2;
};
struct C {
virtual void foo() {};
};
// is_pod is deprecated since C++ 20
template <typename T>
std::enable_if_t<std::is_pod_v<T>, size_t> foo(const T& pod)
{
std::cout << &pod << " is_pod\n";
return 0;
}
template <>
size_t foo<uint8_t>(const uint8_t& b)
{
std::cout << int(b) << " is uint8_t\n";
return 1;
}
template <>
size_t foo<int>(const int& b)
{
std::cout << int(b) << " is int\n";
return 1;
}
int main()
{
uint8_t a = 2;
foo(a);
foo(22);
// will compile
A instance;
foo(instance);
// will not compile
B b;
//foo(b);
// will not compile
C c;
//foo(c);
}
output
2 is uint8_t
22 is int
010FFA64 is_pod
Upvotes: 1