Reputation: 1102
I have downloaded an .ods file from this website (UK office for national statistics). Because of the way the sheet is structured, I import it as two separate dataframes:
library(readODS)
income_pretax <- read_ods('/Users/c.robin/Downloads/NS_Table_3_1a_1819.ods', range = "A4:U103")
income_posttax <- read_ods('/Users/c.robin/Downloads/NS_Table_3_1a_1819.ods', range = "A104:U203")
I want to do some cleaning on both dataframes: changing the name of the two of the variables and recasting one of the variables as numeric. This is what I have for this, which works on a single df:
income_pretax <- income_pretax %>%
rename(pp_tot_income_pretax = 'Percentile point\nTotal income before tax',
'2008-09' = '2008-09(a)')
income_pretax['2008-09'] <- as.numeric(income_pretax$'2008-09')
I'm struggling to get the above into a function though. I think it should be something like the below, but honestly I have no idea how to tell R i'm passing multiple dataframes to the function, nor how to handle multiple variables. Can anyone advise on this?
##Attempting a function
cleanvars <- function(data, varlist){
data <- data %>%
rename(pp_tot_income_pretax = {{varlist}})
data['2008-09'] <- as.numeric(data$'2008-09')
}
Upvotes: 0
Views: 77
Reputation: 887691
We can do this in base R
nm1 <- c('mpg', 'cyl')
nm2 <- paste0("new_", nm1)
i1 <- match(nm1, names(mtcars))
names(mtcars)[i1] <- nm2
Upvotes: 1
Reputation: 389175
You can pass a named vector to the function.
library(dplyr)
cleanvars <- function(data, varlist){
data %>% rename(varlist)
}
cleanvars(mtcars %>% head, c('new_mpg' = 'mpg', 'new_cyl' = 'cyl'))
# new_mpg new_cyl disp hp drat wt qsec vs am gear carb
#Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Upvotes: 3