Reputation: 1
I need to convert thousands of Datetime records to TimeStamp. When I run following code:
from time import strptime
import pandas as pd
import numpy as np
import datetime
cepo = str(pd.read_csv('test.csv',sep = ','))
print(cepo)
element = datetime.datetime.strptime(cepo,'%Y/%m/%d %H:%M:%S')
tuple = element.timetuple()
timestamp = time.mktime(tuple)
print(timestamp)
I get the following error:
Date Time
0 2018/02/11 02:36:59
1 2018/02/12 00:47:11
2 2018/02/12 01:36:36
3 2018/02/12 03:27:51
4 2018/02/12 03:48:29
5 2018/02/12 03:50:49
Traceback (most recent call last):
File "epoch.py", line 9, in <module>
element = datetime.datetime.strptime(cepo,'%Y/%m/%d %H:%M:%S')
File "/Users/joaofontiela/opt/anaconda3/envs/pywork/lib/python3.8/_strptime.py", line 568, in _strptime_datetime
tt, fraction, gmtoff_fraction = _strptime(data_string, format)
File "/Users/joaofontiela/opt/anaconda3/envs/pywork/lib/python3.8/_strptime.py", line 349, in _strptime
raise ValueError("time data %r does not match format %r" %
ValueError: time data ' Date Time\n0 2018/02/11 02:36:59\n1 2018/02/12 00:47:11\n2 2018/02/12 01:36:36\n3 2018/02/12 03:27:51\n4 2018/02/12 03:48:29\n5 2018/02/12 03:50:49' does not match format '%Y/%m/%d %H:%M:%S'
input file (test.csv) looks like:
Date,Time
2018/02/11,02:36:59
2018/02/12,00:47:11
2018/02/12,01:36:36
2018/02/12,03:27:51
2018/02/12,03:48:29
2018/02/12,03:50:49
How do I fix the error "time data does not match format '%Y/%m/%d %H:%M:%S"?
Upvotes: 0
Views: 2508
Reputation: 25554
you can easily combine that 'Date' and 'Time' columns from your csv like
# load the csv file content into a dataframe
df = pd.read_csv(filename)
# combine date and time columns and parse to datetime
df['datetime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
print(df['datetime'])
0 2018-02-11 02:36:59
1 2018-02-12 00:47:11
2 2018-02-12 01:36:36
3 2018-02-12 03:27:51
4 2018-02-12 03:48:29
5 2018-02-12 03:50:49
Name: datetime, dtype: datetime64[ns]
And you can calculate Unix time (Posix / seconds since 1970-01-01 UTC) like
df['posix[s]'] = df['datetime'].astype(int) / 1e9
print(df['posix[s]'])
0 1.518317e+09
1 1.518396e+09
2 1.518399e+09
3 1.518406e+09
4 1.518407e+09
5 1.518407e+09
Name: posix[s], dtype: float64
Upvotes: 1