Reputation: 73
How would you go about using shap or lime or any other model interpretability tools with a TPOT exported pipeline? For example, here is some code for shap library, but you cannot pass the TPOT pipeline in to it. What would you pass in there instead?
explainer = shap.Explainer(model)
shap_values = explainer(X)
Upvotes: 0
Views: 674
Reputation: 3313
Solution 1:
To use SHAP to explain scikit-learn Pipelines, the resulting model object of a TPOT optimization process, you need to instruct SHAP to use the Pipeline named final estimator (classifier/regressor step) and you need to transform your data with any Pipeline transformer step (i.e: pre-processor or feature selector) before feeding it to SHAP explainer.
import numpy as np
import pandas as pd
import shap
from sklearn.datasets import load_iris
from tpot import TPOTClassifier
#Let's use the Iris dataset
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target)
tpot = TPOTClassifier(generations=3, population_size=25, verbosity=3, random_state=42)
tpot.fit(X, y)
#Inspect resulting Pipeline. Great, 2 steps in the Pipeline: one selector and then the classifier.
tpot.fitted_pipeline_
Pipeline(steps=[('variancethreshold', VarianceThreshold(threshold=0.05)),
('logisticregression',
LogisticRegression(C=10.0, random_state=42))])
# Before feeding your data to the explainer, you need to transform the data up to the Pipeline step before the classifier step.
# Beware that in this case it's just one step, but could be more.
shap_df = pd.DataFrame(tpot.fitted_pipeline_.named_steps["variancethreshold"].transform(X), columns=X.columns[tpot.fitted_pipeline_.named_steps["variancethreshold"].get_support(indices=True)])
# Finally, instruct the SHAP explainer to use the classifier step with the transformed data
shap.initjs()
explainer = shap.KernelExplainer(tpot.fitted_pipeline_.named_steps["logisticregression"].predict_proba, shap_df)
shap_values = explainer.shap_values(shap_df)
#Plot summary
shap.summary_plot(shap_values, shap_df)
Solution 2:
Apparentely scikit-learn Pipeline predict_proba()
function will do what has just been described in Solution 1 (i.e: Transform the data, and apply predict_proba with the final estimator.).
In this sense, this should also work for you:
import numpy as np
import pandas as pd
import shap
from sklearn.datasets import load_iris
from tpot import TPOTClassifier
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target)
tpot = TPOTClassifier(generations=10, population_size=50, verbosity=3, random_state=42, template='Selector-Transformer-Classifier')
tpot.fit(X, y)
#Resulting Pipeline
Pipeline(steps=[('variancethreshold', VarianceThreshold(threshold=0.0001)),
('rbfsampler', RBFSampler(gamma=0.8, random_state=42)),
('randomforestclassifier',
RandomForestClassifier(bootstrap=False, criterion='entropy',
max_features=0.5, min_samples_leaf=10,
min_samples_split=12,
random_state=42))])
explainer = shap.KernelExplainer(tpot.fitted_pipeline_.predict_proba, X)
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X)
Additional Remarks
You can use TreeExplainer
which is must faster than the generic KernelExplainer
if you use a tree-based model. As per the documentation, LightGBM, CatBoost, Pyspark and most tree-based scikit-learn models are supported.
Upvotes: 1