Reputation: 195
Say I have a data frame df1
like this below:
> df1
probe OMIM
1 1565034_s_at 601464
2 201000_at 601065 /// 613287 /// 616339
3 204565_at 615652
4 205355_at 600301 /// 610006
5 205734_s_at 601464
6 205735_s_at 601464
7 206527_at 137150 /// 613163
8 209173_at 606358
9 209459_s_at 137150 /// 613163
10 209460_at 137150 /// 613163
11 215465_at
12 223864_at 610856
13 224742_at 612674 /// 613599
And a second data frame, df2
:
> df2
platprobe symbol
1 1565034_s_at,205734_s_at,242078_at,205735_s_at AFF3
2 201000_at AARS
3 201884_at DNALI1
4 202779_s_at PLK1
5 204565_at ACOT13
6 205355_at,226030_at ACADSB
7 205808_at,207284_s_at,209135_at,210896_s_at LIMCH1
8 206164_at,206165_s_at,206166_s_at,217528_at SLC7A8
9 206527_at,209459_s_at,209460_at ABAT
10 209173_at,228969_at AGR2
11 215465_at ABCA12
12 221024_s_at TMEM144
13 223864_at ANKRD30A
14 224742_at,228123_s_at,228124_at ABHD12
15 225421_at,225431_x_at GALNT7
16 226120_at PSAT1
17 228241_at AGR3
I would like to add a new column to df1
, df1$symbol
, based on matching df1$probe
value with df2$platprobe
. The result should be this:
> df1
probe OMIM symbol
1 1565034_s_at 601464 AFF3
2 201000_at 601065 /// 613287 /// 616339 AARS
3 204565_at 615652 ACOT13
4 205355_at 600301 /// 610006 ACADSB
5 205734_s_at 601464 AFF3
6 205735_s_at 601464 AFF3
7 206527_at 137150 /// 613163 ABAT
8 209173_at 606358 AGR2
9 209459_s_at 137150 /// 613163 ABAT
10 209460_at 137150 /// 613163 ABAT
11 215465_at ABCA12
12 223864_at 610856 ANKRD30A
13 224742_at 612674 /// 613599 ABHD12
The challenging part for me is that df2$platprobe
in many cases contains various annotation apart from that one found in df1$probe
. So, if I try:
#This will retrieve only perfect matches (where df2$platprobe contains only one possible value, such as ABCA12):
df1$symbol <- df2$symbol[df2$probe %in% df1$platprobe]
#And if I use 'grepl', that won't work:
#(The reason for using 'unlist' and 'strsplit' is because I thought that maybe breaking all possible
#values from the entire df2$platprobe into a object that would work. But it doesn't)
df1$symbol <- df2$symbol[grepl(df1$probe, unlist(strsplit(paste(df2$platprobe, sep=",", collapse=","), ",")))]
Any help is much appreciated.
PS: also if you have a better idea for a more topic title, it is very welcome.
Update Thank you, @Anoushiravan R. And sorry for not putting the reproducible df's before. Now, here they are:
df1 <- data.frame(probe=c("1565034_s_at", "201000_at", "204565_at",
"205355_at", "205734_s_at", "205735_s_at", "206527_at", "209173_at",
"209459_s_at", "209460_at", "215465_at", "223864_at", "224742_at"
), OMIM = c("601464", "601065 /// 613287 /// 616339", "615652",
"600301 /// 610006", "601464", "601464", "137150 /// 613163",
"606358", "137150 /// 613163", "137150 /// 613163", "", "610856",
"612674 /// 613599"))
df2 <- data.frame(platprobe = c("1565034_s_at, 205734_s_at, 205735_s_at,
227198_at, 242078_at, 243967_at", "201000_at", "201884_at", "202779_s_at",
"204565_at", "205355_at,226030_at", "205808_at, 207284_s_at, 209135_at,
210896_s_at, 224996_at, 225008_at, 242037_at", "206164_at, 206165_s_at,
206166_s_at, 217528_at", "206527_at, 209459_s_at,209460_at", "209173_at,
228969_at", "215465_at", "221024_s_at", "223864_at","224742_at, 228123_s_at,
228124_at", "225421_at,225431_x_at", "226120_at", "228241_at"), symbol=c("AFF3",
"AARS", "DNALI1", "PLK1", "ACOT13", "ACADSB", "LIMCH1", "SLC7A8", "ABAT", "AGR2",
"ABCA12", "TMEM144", "ANKRD30A", "ABHD12", "GALNT7", "PSAT1", "AGR3"))
Upvotes: 2
Views: 64
Reputation: 39647
In case you want to use grep
for matching you can do this via sapply
or lapply
.
df1$symbol <- df2$symbol[sapply(df1$probe, grep, df2$platprobe)]
df1
# probe OMIM symbol
#1 1565034_s_at 601464 AFF3
#2 201000_at 601065 /// 613287 /// 616339 AARS
#3 204565_at 615652 ACOT13
#4 205355_at 600301 /// 610006 ACADSB
#5 205734_s_at 601464 AFF3
#6 205735_s_at 601464 AFF3
#7 206527_at 137150 /// 613163 ABAT
#8 209173_at 606358 AGR2
#9 209459_s_at 137150 /// 613163 ABAT
#10 209460_at 137150 /// 613163 ABAT
#11 215465_at ABCA12
#12 223864_at 610856 ANKRD30A
#13 224742_at 612674 /// 613599 ABHD12
Upvotes: 1
Reputation: 2268
Another way to deal with your problem is based on your view / observation that your matching key is "collapsed" in the 2nd dataframe.
{tidyr}
has a great function to split nested values in new rows, i.e. tidyr()::separate_rows()
. This will turn your 2nd df in a long format.
Note: separate_rows()
allows to split over multiple columns if needed.
But here we use only your key platprobe
.
library(dplyr) # data crunching
library(tidyr) # data manipulation for generating tidy df
# how to separate the nested column values to rows
df2 %>% separate_rows(platprobe, sep = ",")
Checking the row-spread:
# A tibble: 33 x 2
platprobe symbol
<chr> <chr>
1 1565034_s_at AFF3
2 205734_s_at AFF3
3 242078_at AFF3
4 205735_s_at AFF3
5 201000_at AARS
...
You now have a proper alignment of the matching keys and do a left_join()
to merge both data frames.
# merging the "long" lookup df2 with df1
df1 %>% left_join(
df2 %>% separate_rows(platprobe, sep = ",")
, by = c("probe" = "platprobe") # define matching keys in df1 and df2
)
This delivers
probe symbol
1 1565034_s_at AFF3
2 201000_at AARS
3 204565_at ACOT13
4 205355_at ACADSB
...
Upvotes: 2
Reputation: 26218
Though the answer above serves the purpose, yet to show that it can be done without purrr
also
library(dplyr)
library(tidyr)
library(stringr)
df1 %>% left_join(df2 %>% separate_rows(platprobe, sep = ',') %>%
mutate(platprobe = str_trim(platprobe)), by = c('probe' = 'platprobe'))
probe OMIM symbol
1 1565034_s_at 601464 AFF3
2 201000_at 601065 /// 613287 /// 616339 AARS
3 204565_at 615652 ACOT13
4 205355_at 600301 /// 610006 ACADSB
5 205734_s_at 601464 AFF3
6 205735_s_at 601464 AFF3
7 206527_at 137150 /// 613163 ABAT
8 209173_at 606358 AGR2
9 209459_s_at 137150 /// 613163 ABAT
10 209460_at 137150 /// 613163 ABAT
11 215465_at ABCA12
12 223864_at 610856 ANKRD30A
13 224742_at 612674 /// 613599 ABHD12
Upvotes: 2
Reputation: 21908
You can use the following solution:
library(dplyr)
library(stringr)
library(purrr)
df1 %>%
mutate(symbol = map_chr(probe, ~ df2$symbol[which(str_detect(df2$platprobe, .x))]))
probe OMIM symbol
1 1565034_s_at 601464 AFF3
2 201000_at 601065 /// 613287 /// 616339 AARS
3 204565_at 615652 ACOT13
4 205355_at 600301 /// 610006 ACADSB
5 205734_s_at 601464 AFF3
6 205735_s_at 601464 AFF3
7 206527_at 137150 /// 613163 ABAT
8 209173_at 606358 AGR2
9 209459_s_at 137150 /// 613163 ABAT
10 209460_at 137150 /// 613163 ABAT
11 215465_at ABCA12
12 223864_at 610856 ANKRD30A
13 224742_at 612674 /// 613599 ABHD12
Upvotes: 2