Reputation: 23
So I am trying to build a neural network with multiple outputs. I want to recognize gender and age using a face image and then I will further add more outputs once this issue is resolved.
Input-type = Image (originally 200200, resized to 6464)
Output-type = Array(len = 2)
(Pdb) x_train.shape <br/>
(18965, 64, 64, 1)<br/>
(Pdb) y_train.shape <br/>
(18965, 2)<br/>
(Pdb) x_test.shape<br/>
(4742, 64, 64, 1)<br/>
(Pdb) y_test.shape <br/>
(4742, 2)<br/>
Neural Network:-
input_layer = Input((x_train[0].shape))
conv1 = Conv2D(64,(4,4),activation="relu",strides=(2,2))(input_layer)
batchnorm1 = BatchNormalization()(conv1)
maxpool1 = MaxPooling2D((2,2))(batchnorm1)
drop1 = Dropout(0.3)(maxpool1)
conv2 = Conv2D(64,(4,4),activation="relu",strides=(2,2))(drop1)
batchnorm2 = BatchNormalization()(conv2)
maxpool2 = MaxPooling2D((2,2))(batchnorm2)
drop2 = Dropout(0.3)(maxpool2)
conv3 = Conv2D(64,(2,2), activation='relu',strides=(1,1))(drop2)
dense = Dense(32,activation = 'relu')(conv3)
flat = Flatten()(dense)
dense1 = Dense(32,activation = 'relu')(flat)
dense2 = Dense(32,activation = 'relu')(flat)
age_out = Dense(1,activation = 'relu',name = 'age')(dense1)
gen_out = Dense(1,activation= 'sigmoid', name = 'gen')(dense2)
def scheduler(epoch, lr):
if epoch<25:
return lr
elif epoch%25==0:
return lr * 0.5
learning_rate = tf.keras.callbacks.LearningRateScheduler(scheduler)
adam = Adam(learning_rate=5e-5)
model = Model(inputs=input_layer, outputs = [gen_out,age_out])
# model._set_output_names
model.compile(loss={'gen':"binary_crossentropy",'age':"mae"},optimizer = adam, metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=50,validation_data = (x_test,y_test),epochs=100, callbacks=[learning_rate])
Error:-
Traceback (most recent call last):
File "F:\projects\Ultimate Project\age.py", line 86, in <module>
neural_network()
File "F:\projects\Ultimate Project\age.py", line 78, in neural_network
model.fit(x_train,y_train,batch_size=50,validation_data = (x_test,y_test),epochs=100, callbacks=[learning_rate])
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1100, in fit
tmp_logs = self.train_function(iterator)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 828, in __call__
result = self._call(*args, **kwds)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 871, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 726, in _initialize
*args, **kwds))
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\function.py", line 2969, in _get_concrete_function_internal_garbage_collected
graph_function, _ = self._maybe_define_function(args, kwargs)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\function.py", line 3361, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\function.py", line 3206, in _create_graph_function
capture_by_value=self._capture_by_value),
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 990, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\eager\def_function.py", line 634, in wrapped_fn
out = weak_wrapped_fn().__wrapped__(*args, **kwds)
File "F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 977, in wrapper
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\training.py:805 train_function *
return step_function(self, iterator)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3417 _call_for_each_replica
return fn(*args, **kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\training.py:788 run_step **
outputs = model.train_step(data)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\training.py:756 train_step
y, y_pred, sample_weight, regularization_losses=self.losses)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:203 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\losses.py:152 __call__
losses = call_fn(y_true, y_pred)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\losses.py:256 call **
return ag_fn(y_true, y_pred, **self._fn_kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
return target(*args, **kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\losses.py:1608 binary_crossentropy
K.binary_crossentropy(y_true, y_pred, from_logits=from_logits), axis=-1)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
return target(*args, **kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\keras\backend.py:4979 binary_crossentropy
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
return target(*args, **kwargs)
F:\projects\Ultimate Project\env\lib\site-packages\tensorflow\python\ops\nn_impl.py:174 sigmoid_cross_entropy_with_logits
(logits.get_shape(), labels.get_shape()))
ValueError: logits and labels must have the same shape ((None, 1) vs (None, 2))
As far as I can understand, this error means that the neural network is giving output in the shape of (none,1) but my actual output is of (none,2). If I am using this config for loss model.compile(loss=["binary_crossentropy","mae"],optimizer = adam, metrics=['accuracy'])
with model = Model(inputs=input_layer, outputs = tf.keras.layers.concatenate([gen_out,age_out], axis=-1))
then it runs but it gives me only a single loss instead of separate losses for both output layers and that too goes negative after some epochs.
I tried my best to explain my problem if there is any confusion then my apologies, let me know and I will add it.
Upvotes: 1
Views: 3574
Reputation: 434
You should also split the y_train
and y_test
like this:
model.fit(x_train, [y_train[:, 0], y_train[:, 1]], batch_size=50,
validation_data = (x_test, [y_test[:, 0], y_test[:, 1]] ),
epochs=100, callbacks=[learning_rate])
Upvotes: 2