Reputation: 33
So i want to be able to buy/sell the token, but also have the ability for users to send eth to my contract wallet and receive my tokens in exchange. I believe i have the code ready for buyers and sellers to make a transaction together, dont think i have the pieces for someone to recieve tokens for sending me ethereum. I would like to make it so at the start people send me eth for a number of coins set at a base value
pragma solidity 0.4.22;
contract ERC20Basic {
string public constant name = "Community Token";
string public constant symbol = "COMM";
uint8 public constant decimals = 1;
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
event Transfer(address indexed from, address indexed to, uint tokens);
mapping(address => uint256) balances;
mapping(address => mapping (address => uint256)) allowed;
uint256 totalSupply_;
using SafeMath for uint256;
constructor(uint256 total) public {
totalSupply_ = total;
balances[msg.sender] = totalSupply_;
}
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
function balanceOf(address tokenOwner) public view returns (uint) {
return balances[tokenOwner];
}
function transfer(address receiver, uint numTokens) public returns (bool) {
require(numTokens <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(numTokens);
balances[receiver] = balances[receiver].add(numTokens);
emit Transfer(msg.sender, receiver, numTokens);
return true;
}
function approve(address delegate, uint numTokens) public returns (bool) {
allowed[msg.sender][delegate] = numTokens;
emit Approval(msg.sender, delegate, numTokens);
return true;
}
function allowance(address owner, address delegate) public view returns (uint) {
return allowed[owner][delegate];
}
function transferFrom(address owner, address buyer, uint numTokens) public returns (bool) {
require(numTokens <= balances[owner]);
require(numTokens <= allowed[owner][msg.sender]);
balances[owner] = balances[owner].sub(numTokens);
allowed[owner][msg.sender] = allowed[owner][msg.sender].sub(numTokens);
balances[buyer] = balances[buyer].add(numTokens);
emit Transfer(owner, buyer, numTokens);
return true;
}
}
library SafeMath {
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
Upvotes: 3
Views: 12354
Reputation: 43591
A very basic example of buy and sell:
pragma solidity ^0.8;
contract ERC20Basic{
uint256 public constant tokenPrice = 5; // 1 token for 5 wei
function buy(uint256 _amount) external payable {
// e.g. the buyer wants 100 tokens, needs to send 500 wei
require(msg.value == _amount * tokenPrice, 'Need to send exact amount of wei');
/*
* sends the requested amount of tokens
* from this contract address
* to the buyer
*/
transfer(msg.sender, _amount);
}
function sell(uint256 _amount) external {
// decrement the token balance of the seller
balances[msg.sender] -= _amount;
increment the token balance of this contract
balances[address(this)] += _amount;
/*
* don't forget to emit the transfer event
* so that external apps can reflect the transfer
*/
emit Transfer(msg.sender, address(this), _amount);
// e.g. the user is selling 100 tokens, send them 500 wei
payable(msg.sender).transfer(amount * tokenPrice);
}
}
This will allow any user to buy or sell tokens from/to your contract. Your contract will need to own these tokens in order to sell them to the users. Also your contract will need to have enough ETH in order to buy back tokens from the users.
You can expand on this code to implement
msg.value
(the user won't have to have the exact amount)Note that my snippet is using Solidity 0.8 where integer overflow is prevented automatically. The question is using deprecated Solidity 0.4, so that you'd need to use SafeMath, check the value with require/assert or upgrade to Solidity 0.8 to reach the same result.
Upvotes: 3