Reputation: 59
This is my code below and the error I have is beneath it but I cant figure out why this is happening. Please share your thoughts
from gensim.models import word2vec
np.set_printoptions(suppress=True)
feature_size = 150
context_size= 2
min_word = 1
word_vec= word2vec.Word2Vec(tokenized, size=feature_size, \
window=context_size, min_count=min_word, \
iter=50, seed=42)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-59-dbe3a4fa3884> in <module>
5 context_size= 2
6 min_word = 1
----> 7 word_vec= word2vec.Word2Vec(tokenized, size=feature_size, \
8 window=context_size, min_count=min_word, \
9 iter=50, seed=42)
TypeError: __init__() got an unexpected keyword argument 'size'
Upvotes: 6
Views: 21173
Reputation: 179
I have met the same problem and solved it by looking up the Word2Vec embedding documentation. Notice there are two changes in parameters in new Gensim:
[1] size -> vector_size
[2] iter -> epochs
Here is a code example from the documentation:
from gensim.test.utils import common_texts
from gensim.models import Word2Vec
model = Word2Vec(sentences=common_texts, vector_size=100, window=5, min_count=1, workers=4)
model.save("word2vec.model")
model = Word2Vec.load("word2vec.model")
model.train([["hello", "world"]], total_examples=1, epochs=1)
Upvotes: 15