Reputation: 345
This is the data that I have
structure(list(id = c(1, 1, 1, 1, 1), columnA = c("2011/01/01",
"2013/01/01", "2014/01/01", "2015/01/01", "2015/01/10"), columnB = c("NA",
"2013/01/01", "2013/01/02", "2014/01/01", "NA")), row.names = c(NA,
5L), class = "data.frame")
and this is what I want
structure(list(id = c(1, 1, 1, 1, 1), A = c("2011/01/01", "2013/01/01",
"2014/01/01", "2015/01/01", "2015/01/10"), B = c("NA", "2013/01/02",
"NA", "2014/01/01", "NA")), row.names = c(NA, 5L), class = "data.frame")
Basically, i want if the values in columnA and columnB are equal, then bring up the value from row -1 in the same column and insert an NA in place of the value going up the column. I tried this
`library(dplyr)
data %>%
group_by(id) %>%
mutate(columnB = case_when(is.na(columnB) ~ NA_character_,
columnA == columnB ~ lead(columnB))) %>%
ungroup
`
the problem is that it convert all other values in columnB to NA as well. I want where the values in A and B are not equal to remain the same and not converted to NAs.
Upvotes: 0
Views: 733
Reputation: 53
aa = structure(list(
id = c(1, 1, 1, 1, 1),
columnA = c(
"2011/01/01",
"2013/01/01",
"2014/01/01",
"2015/01/01",
"2015/01/10"
),
columnB = c("NA",
"2013/01/01", "2013/01/02", "2015/01/01", "NA")
),
row.names = c(NA,
5L),
class = "data.frame")
bb=aa
for (i in 1:5){
if (aa[i,2]==aa[i,3]){
bb[i,3]=bb[i+1,3]
bb[i+1,3]="NA"
}
}
Upvotes: 0
Reputation: 887961
Based on the description, we can use lead
library(dplyr)
df1 %>%
group_by(id) %>%
mutate(columnB = case_when(is.na(columnB) ~ NA_character_,
columnA == columnB ~ lead(columnB))) %>%
ungroup
Upvotes: 1