Reputation: 503
This is a follow up question for this
Say I have this dataset:
dff = pd.DataFrame(np.array([["2020-11-13",3,4, 0,0], ["2020-10-11", 3,4,0,1], ["2020-11-13", 1,4,1,1],
["2020-11-14", 3,4,0,0], ["2020-11-13", 5,4,0,1],
["2020-11-14", 2,4,1,1],["2020-11-12", 1,4,0,1],["2020-11-14", 2,4,0,1],["2020-11-15", 5,4,1,1],
["2020-11-11", 1,2,0,0],["2020-11-15", 1,2,0,1],
["2020-11-18", 2,4,0,1],["2020-11-17", 1,2,0,0],["2020-11-20", 3,4,0,0]]), columns=['Timestamp', 'Name', "slot", "A", "B"])
I want to have a count for each Name
and slot
combination but disregard multiple timeseries value for same combination of A
and B
. For example, if I simply group by Name
and slot
I get:
dff.groupby(['Name', "slot"]).Timestamp.count().reset_index(name="count")
Name slot count
1 2 3
1 4 2
2 4 3
3 4 4
5 4 2
However, for A == 0 && B == 0
, there are two combinations for name == 1
and slot == 2
, so instead of 3
I want the count to be 2
.
This is the table I would ideally want.
Name slot count
1 2 2
1 4 2
2 4 2
3 4 2
5 4 2
I tried:
filter_one = dff.groupby(['A','B']).Timestamp.transform(min)
dff1 = dff.loc[dff.Timestamp == filter_one]
dff1.groupby(['Name', "slot"]).Timestamp.count().reset_index(name="count")
But this gives me:
Name slot count
1 2 1
1 4 1
3 4 1
It also does not work if I drop duplicates for A
and B
.
Upvotes: 0
Views: 35
Reputation: 75080
If I understand correctly, you may just need to drop the duplicates based on the combination of the grouper columns with A and B before grouping:
u = dff.drop_duplicates(['Name','slot','A','B'])
u.groupby(['Name', "slot"]).Timestamp.count().reset_index(name="count")
Name slot count
0 1 2 2
1 1 4 2
2 2 4 2
3 3 4 2
4 5 4 2
Upvotes: 1