Reputation: 117
I have a dataframe that looks like this:
Temp
Date
1981-01-01 20.7
1981-01-02 17.9
1981-01-03 18.8
1981-01-04 14.6
1981-01-05 15.8
... ...
1981-12-27 15.5
1981-12-28 13.3
1981-12-29 15.6
1981-12-30 15.2
1981-12-31 17.4
365 rows × 1 columns
And I want to transform It so That It looks like:
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
0 20.7 17.0 18.4 19.5 13.3 12.9 12.3 15.3 14.3 14.8
1 17.9 15.0 15.0 17.1 15.2 13.8 13.8 14.3 17.4 13.3
2 18.8 13.5 10.9 17.1 13.1 10.6 15.3 13.5 18.5 15.6
3 14.6 15.2 11.4 12.0 12.7 12.6 15.6 15.0 16.8 14.5
4 15.8 13.0 14.8 11.0 14.6 13.7 16.2 13.6 11.5 14.3
... ... ... ... ... ... ... ... ... ... ...
360 15.5 15.3 13.9 12.2 11.5 14.6 16.2 9.5 13.3 14.0
361 13.3 16.3 11.1 12.0 10.8 14.2 14.2 12.9 11.7 13.6
362 15.6 15.8 16.1 12.6 12.0 13.2 14.3 12.9 10.4 13.5
363 15.2 17.7 20.4 16.0 16.3 11.7 13.3 14.8 14.4 15.7
364 17.4 16.3 18.0 16.4 14.4 17.2 16.7 14.1 12.7 13.0
My attempt:
groups=df.groupby(df.index.year)
keys=groups.groups.keys()
years=pd.DataFrame()
for key in keys:
years[key]=groups.get_group(key)['Temp'].values
Question: The above code is giving me my desired output but Is there is a more efficient way of transforming this?
As I can't post the whole data because there are 3650 rows in the dataframe so you can download the csv file(60.6 kb) for testing from here
Upvotes: 3
Views: 60
Reputation: 35626
Try grabbing the year and dayofyear from the index then pivoting:
import pandas as pd
import numpy as np
# Create Random Data
dr = pd.date_range(pd.to_datetime("1981-01-01"), pd.to_datetime("1982-12-31"))
df = pd.DataFrame(np.random.randint(1, 100, size=dr.shape),
index=dr,
columns=['Temp'])
# Get Year and Day of Year
df['year'] = df.index.year
df['day'] = df.index.dayofyear
# Pivot
p = df.pivot(index='day', columns='year', values='Temp')
print(p)
p
:
year 1981 1982
day
1 38 85
2 51 70
3 76 61
4 71 47
5 44 76
.. ... ...
361 23 22
362 42 64
363 84 22
364 26 56
365 67 73
Run-Time via Timeit
import timeit
setup = '''
import pandas as pd
import numpy as np
# Create Random Data
dr = pd.date_range(pd.to_datetime("1981-01-01"), pd.to_datetime("1983-12-31"))
df = pd.DataFrame(np.random.randint(1, 100, size=dr.shape),
index=dr,
columns=['Temp'])'''
pivot = '''
df['year'] = df.index.year
df['day'] = df.index.dayofyear
p = df.pivot(index='day', columns='year', values='Temp')'''
groupby_for = '''
groups=df.groupby(df.index.year)
keys=groups.groups.keys()
years=pd.DataFrame()
for key in keys:
years[key]=groups.get_group(key)['Temp'].values'''
if __name__ == '__main__':
print("Pivot")
print(timeit.timeit(setup=setup, stmt=pivot, number=1000))
print("Groupby For")
print(timeit.timeit(setup=setup, stmt=groupby_for, number=1000))
Pivot
1.598973
Groupby For
2.3967995999999996
*Additional note, the groupby for option will not work for leap years as it will not be able to handle 1984 being 366 days instead of 365. Pivot will work regardless.
Upvotes: 2