sj755
sj755

Reputation: 4062

How to create a high resolution timer in Linux to measure program performance?

I'm trying to compare GPU to CPU performance. For the NVIDIA GPU I've been using the cudaEvent_t types to get a very precise timing.

For the CPU I've been using the following code:

// Timers
clock_t start, stop;
float elapsedTime = 0;

// Capture the start time

start = clock();

// Do something here
.......

// Capture the stop time
stop = clock();
// Retrieve time elapsed in milliseconds
elapsedTime = (float)(stop - start) / (float)CLOCKS_PER_SEC * 1000.0f;

Apparently, that piece of code is only good if you're counting in seconds. Also, the results sometime come out quite strange.

Does anyone know of some way to create a high resolution timer in Linux?

Upvotes: 50

Views: 110867

Answers (7)

radato
radato

Reputation: 930

After reading this thread I started testing the code for clock_gettime against c++11's chrono and they don't seem to match.

There is a huge gap between them!

The std::chrono::seconds(1) seems to be equivalent to ~70,000 of the clock_gettime

#include <ctime>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <thread>
#include <chrono>
#include <iomanip>
#include <vector>
#include <mutex>

timespec diff(timespec start, timespec end);
timespec get_cpu_now_time();
std::vector<timespec> get_start_end_pairs();
std::vector<timespec> get_start_end_pairs2();
void output_deltas(const std::vector<timespec> &start_end_pairs);

//=============================================================
int main()
{
    std::cout << "Hello waiter" << std::endl; // flush is intentional
    std::vector<timespec> start_end_pairs = get_start_end_pairs2();
    output_deltas(start_end_pairs);

    return EXIT_SUCCESS;
}

//=============================================================
std::vector<timespec> get_start_end_pairs()
{
    std::vector<timespec> start_end_pairs;
    for (int i = 0; i < 20; ++i)
    {
        start_end_pairs.push_back(get_cpu_now_time());
        std::this_thread::sleep_for(std::chrono::seconds(1));
        start_end_pairs.push_back(get_cpu_now_time());
    }

    return start_end_pairs;
}


//=============================================================
std::vector<timespec> get_start_end_pairs2()
{
    std::mutex mu;
    std::vector<std::thread> workers;
    std::vector<timespec> start_end_pairs;
    for (int i = 0; i < 20; ++i) {
        workers.emplace_back([&]()->void {
            auto start_time = get_cpu_now_time();
            std::this_thread::sleep_for(std::chrono::seconds(1));
            auto end_time = get_cpu_now_time();
            std::lock_guard<std::mutex> locker(mu);
            start_end_pairs.emplace_back(start_time);
            start_end_pairs.emplace_back(end_time);
        });
    }

    for (auto &worker: workers) {
        if (worker.joinable()) {
            worker.join();
        }
    }

    return start_end_pairs;
}

//=============================================================
void output_deltas(const std::vector<timespec> &start_end_pairs)
{
    std::cout << "size: " << start_end_pairs.size() << std::endl;
    for (auto it_start = start_end_pairs.begin(); it_start < start_end_pairs.end(); it_start += 2)
    {
        auto it_end = it_start + 1;
        auto delta = diff(*it_start, *it_end);

        std::cout
                << std::setw(2)
                << std::setfill(' ')
                << std::distance(start_end_pairs.begin(), it_start) / 2
                << " Waited ("
                << delta.tv_sec
                << "\ts\t"
                << std::setw(9)
                << std::setfill('0')
                << delta.tv_nsec
                << "\tns)"
                << std::endl;
    }
}

//=============================================================
timespec diff(timespec start, timespec end)
{
    timespec temp;
    temp.tv_sec = end.tv_sec-start.tv_sec;
    temp.tv_nsec = end.tv_nsec-start.tv_nsec;

    if (temp.tv_nsec < 0) {
        --temp.tv_sec;
        temp.tv_nsec += 1000000000;
    }
    return temp;
}

//=============================================================
timespec get_cpu_now_time()
{
    timespec now_time;
    memset(&now_time, 0, sizeof(timespec));
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now_time);

    return now_time;
}

output:

Hello waiter
 0 Waited (0    s       000843254       ns)
 1 Waited (0    s       000681141       ns)
 2 Waited (0    s       000685119       ns)
 3 Waited (0    s       000674252       ns)
 4 Waited (0    s       000714877       ns)
 5 Waited (0    s       000624202       ns)
 6 Waited (0    s       000746091       ns)
 7 Waited (0    s       000575267       ns)
 8 Waited (0    s       000860157       ns)
 9 Waited (0    s       000827479       ns)
10 Waited (0    s       000612959       ns)
11 Waited (0    s       000534818       ns)
12 Waited (0    s       000553728       ns)
13 Waited (0    s       000586501       ns)
14 Waited (0    s       000627116       ns)
15 Waited (0    s       000616725       ns)
16 Waited (0    s       000616507       ns)
17 Waited (0    s       000641251       ns)
18 Waited (0    s       000683380       ns)
19 Waited (0    s       000850205       ns)

Upvotes: 1

NPE
NPE

Reputation: 500167

Check out clock_gettime, which is a POSIX interface to high-resolution timers.

If, having read the manpage, you're left wondering about the difference between CLOCK_REALTIME and CLOCK_MONOTONIC, see Difference between CLOCK_REALTIME and CLOCK_MONOTONIC?

See the following page for a complete example: http://www.guyrutenberg.com/2007/09/22/profiling-code-using-clock_gettime/

#include <iostream>
#include <time.h>
using namespace std;

timespec diff(timespec start, timespec end);

int main()
{
    timespec time1, time2;
    int temp;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
    for (int i = 0; i< 242000000; i++)
        temp+=temp;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
    cout<<diff(time1,time2).tv_sec<<":"<<diff(time1,time2).tv_nsec<<endl;
    return 0;
}

timespec diff(timespec start, timespec end)
{
    timespec temp;
    if ((end.tv_nsec-start.tv_nsec)<0) {
        temp.tv_sec = end.tv_sec-start.tv_sec-1;
        temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;
    } else {
        temp.tv_sec = end.tv_sec-start.tv_sec;
        temp.tv_nsec = end.tv_nsec-start.tv_nsec;
    }
    return temp;
}

Upvotes: 70

Kevin Lee
Kevin Lee

Reputation: 41

epoll implemention: https://github.com/ielife/simple-timer-for-c-language

use like this:

timer_server_handle_t *timer_handle = timer_server_init(1024);
if (NULL == timer_handle) {
    fprintf(stderr, "timer_server_init failed\n");
    return -1;
}
ctimer timer1;
    timer1.count_ = 3;
    timer1.timer_internal_ = 0.5;
    timer1.timer_cb_ = timer_cb1;
    int *user_data1 = (int *)malloc(sizeof(int));
    *user_data1 = 100;
    timer1.user_data_ = user_data1;
    timer_server_addtimer(timer_handle, &timer1);

    ctimer timer2;
    timer2.count_ = -1;
    timer2.timer_internal_ = 0.5;
    timer2.timer_cb_ = timer_cb2;
    int *user_data2 = (int *)malloc(sizeof(int));
    *user_data2 = 10;
    timer2.user_data_ = user_data2;
    timer_server_addtimer(timer_handle, &timer2);

    sleep(10);

    timer_server_deltimer(timer_handle, timer1.fd);
    timer_server_deltimer(timer_handle, timer2.fd);
    timer_server_uninit(timer_handle);

Upvotes: 0

Alex
Alex

Reputation: 18522

To summarise information presented so far, these are the two functions required for typical applications.

#include <time.h>

// call this function to start a nanosecond-resolution timer
struct timespec timer_start(){
    struct timespec start_time;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_time);
    return start_time;
}

// call this function to end a timer, returning nanoseconds elapsed as a long
long timer_end(struct timespec start_time){
    struct timespec end_time;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_time);
    long diffInNanos = (end_time.tv_sec - start_time.tv_sec) * (long)1e9 + (end_time.tv_nsec - start_time.tv_nsec);
    return diffInNanos;
}

Here is an example of how to use them in timing how long it takes to calculate the variance of a list of input.

struct timespec vartime = timer_start();  // begin a timer called 'vartime'
double variance = var(input, MAXLEN);  // perform the task we want to time
long time_elapsed_nanos = timer_end(vartime);
printf("Variance = %f, Time taken (nanoseconds): %ld\n", variance, time_elapsed_nanos);

Upvotes: 22

Foo Bah
Foo Bah

Reputation: 26251

Are you interested in wall time (how much time actually elapses) or cycle count (how many cycles)? In the first case, you should use something like gettimeofday.

The highest resolution timer uses the RDTSC x86 assembly instruction. However, this measures clock ticks, so you should be sure that power saving mode is disabled.

The wiki page for TSC gives a few examples: http://en.wikipedia.org/wiki/Time_Stamp_Counter

Upvotes: 1

Karoly Horvath
Karoly Horvath

Reputation: 96258

struct timespec t;
clock_gettime(CLOCK_REALTIME, &t);

there is also CLOCK_REALTIME_HR, but I'm not sure whether it makes any difference..

Upvotes: 1

Nikolai Fetissov
Nikolai Fetissov

Reputation: 84151

clock_gettime(2)

Upvotes: 0

Related Questions