Reputation: 91
I have several seperate data frames that I would like to keep separated because merging them together would create a very large element.
However, there are variables from another data frame that I would like to merge with all of them now.
Here is an example of what I would like to do:
df1 <- data.frame(ID1 = c(1:10), Var1 = rep(c(1,0),5))
df2 <- data.frame(ID1 = c(1:10), Var2 = c(21:30))
dfs <- Filter(function(x) is(x, "data.frame"), mget(ls()))
mergewith <- data.frame(ID1 = c(1:10), ID2 = c(41:50))
My goal is that df1 and df2 will look like this:
df1
ID1 Var1 ID2
1 1 1 41
2 2 0 42
3 3 1 43
4 4 0 44
5 5 1 45
6 6 0 46
7 7 1 47
8 8 0 48
9 9 1 49
10 10 0 50
df2
ID1 Var2 ID2
1 1 21 41
2 2 22 42
3 3 23 43
4 4 24 44
5 5 25 45
6 6 26 46
7 7 27 47
8 8 28 48
9 9 29 49
10 10 30 50
What I have tried so far is:
dat = lapply(dfs,function(x){
merge(names(x), mergewith, by = "ID1");x})
list2env(dat,.GlobalEnv)
However, then I get the following message: "'by' must specify a uniquely valid column"
Is it possible to do this without using a loop?
Upvotes: 1
Views: 181
Reputation: 101343
You can try Map
> Map(function(x, y) merge(x, y, by = "ID1"), dfs, list(mergewith))
[[1]]
ID1 Var1 ID2
1 1 1 41
2 2 0 42
3 3 1 43
4 4 0 44
5 5 1 45
6 6 0 46
7 7 1 47
8 8 0 48
9 9 1 49
10 10 0 50
[[2]]
ID1 Var2 ID2
1 1 21 41
2 2 22 42
3 3 23 43
4 4 24 44
5 5 25 45
6 6 26 46
7 7 27 47
8 8 28 48
9 9 29 49
10 10 30 50
Upvotes: 1
Reputation: 388982
You can use lapply
to merge
all the dataframes in dfs
with mergewith
. Use list2env
to get the changed dataframes in the global environment.
list2env(lapply(dfs, function(x) merge(x, mergewith, by = 'ID1')), .GlobalEnv)
Upvotes: 1