Reputation: 473
I have written some code to gather URLs for each race course from https://www.horseracing.net/racecards. I have also written some code to scrape data from each race course page.
Each bit of code works as it should but I am having trouble creating a for loop to loop through all the race course URLs.
Here's the code to scrape the course URLs:
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
todays_racecard_url = 'https://www.horseracing.net/racecards'
base_url = "https://www.horseracing.net"
reqs = requests.get(todays_racecard_url)
content = reqs.text
soup = BeautifulSoup(content, 'html.parser')
course_urls = []
for h in soup.findAll('h3'):
a = h.find('a')
try:
if 'href' in a.attrs:
card_url = urljoin(base_url, a.get('href'))
course_urls.append(card_url)
except:
pass
for card_url in course_urls:
print(card_url)
And here's the code to scrape the pages:
import requests
from requests import get
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
url = "https://www.horseracing.net/racecards/fontwell/13-05-21"
results = requests.get(url)
soup = BeautifulSoup(results.text, "html.parser")
date = []
course = []
time = []
runner = []
tips = []
tipsters = []
runner_div = soup.find_all('div', class_='row-cell-right')
for container in runner_div:
runner_name = container.h5.a.text
runner.append(runner_name)
tips_no = container.find('span', class_='tip-text number-tip').text if container.find('span', class_='tip-text number-tip') else ''
tips.append(tips_no)
tipster_names = container.find('span', class_='pointers-text currency-text').text if container.find('span', class_='pointers-text currency-text') else ''
tipsters.append(tipster_names)
newspaper_tips = pd.DataFrame({
'Runners': runner,
'Tips': tips,
'Tipsters': tipsters,
})
newspaper_tips['Tipsters'] = newspaper_tips['Tipsters'].str.replace(' - ', '')
newspaper_tips.to_csv('NewspaperTips.csv', mode='a', header=False, index=False)
How do I join them to get the result I'm looking for?
Upvotes: 2
Views: 70
Reputation: 46789
It could be combined as follows:
import pandas as pd
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
todays_racecard_url = 'https://www.horseracing.net/racecards'
base_url = "https://www.horseracing.net"
req = requests.get(todays_racecard_url)
soup_racecard = BeautifulSoup(req.content, 'html.parser')
df = pd.DataFrame(columns=['Runners', 'Tips', 'Tipsters'])
for h in soup_racecard.find_all('h3'):
a = h.find('a', href=True) # only find tags with href present
if a:
url = urljoin(base_url, a['href'])
print(url)
results = requests.get(url)
soup_url = BeautifulSoup(results.text, "html.parser")
for container in soup_url.find_all('div', class_='row-cell-right'):
runner_name = container.h5.a.text
tips_no = container.find('span', class_='tip-text number-tip').text if container.find('span', class_='tip-text number-tip') else ''
tipster_names = container.find('span', class_='pointers-text currency-text').text if container.find('span', class_='pointers-text currency-text') else ''
row = [runner_name, tips_no, tipster_names]
df.loc[len(df)] = row # append the new row
df['Tipsters'] = df['Tipsters'].str.replace(' - ', '')
df.to_csv('NewspaperTips.csv', index=False)
Giving you a CSV starting:
Runners,Tips,Tipsters
Ajrad,2,NEWMARKET
Royal Tribute,1,The Times
Time Interval,1,Daily Mirror
Hemsworth,1,Daily Express
Ancient Times,,
Final Watch,,
Hala Joud,,
May Night,1,The Star
Tell'Em Nowt,,
Upvotes: 1