Reputation: 570
I'm trying to plot patient flows between 3 clusters in a Sankey diagram. I have a pd.DataFrame counts
with from-to values, see below. To reproduce this DF, here is the counts
dict that should be loaded into a pd.DataFrame (which is the input for the visualize_cluster_flow_counts function).
from to value
0 C1_1 C1_2 867
1 C1_1 C2_2 405
2 C1_1 C0_2 2
3 C2_1 C1_2 46
4 C2_1 C2_2 458
... ... ... ...
175 C0_20 C0_21 130
176 C0_20 C2_21 1
177 C2_20 C1_21 12
178 C2_20 C0_21 0
179 C2_20 C2_21 96
The from
and to
values in the DataFrame represent the cluster number (either 0, 1, or 2) and the amount of days for the x-axis (between 1 and 21). If I plot the Sankey diagram with these values, this is the result:
Code:
import plotly.graph_objects as go
def visualize_cluster_flow_counts(counts):
all_sources = list(set(counts['from'].values.tolist() + counts['to'].values.tolist()))
froms, tos, vals, labs = [], [], [], []
for index, row in counts.iterrows():
froms.append(all_sources.index(row.values[0]))
tos.append(all_sources.index(row.values[1]))
vals.append(row[2])
labs.append(row[3])
fig = go.Figure(data=[go.Sankey(
arrangement='snap',
node = dict(
pad = 15,
thickness = 5,
line = dict(color = "black", width = 0.1),
label = all_sources,
color = "blue"
),
link = dict(
source = froms,
target = tos,
value = vals,
label = labs
))])
fig.update_layout(title_text="Patient flow between clusters over time: 48h (2 days) - 504h (21 days)", font_size=10)
fig.show()
visualize_cluster_flow_counts(counts)
However, I would like to vertically order the bars so that the C0's are always on top, the C1's are always in the middle, and the C2's are always at the bottom (or the other way around, doesn't matter). I know that we can set node.x
and node.y
to manually assign the coordinates. So, I set the x-values to the amount of days * (1/range of days), which is an increment of +- 0.045. And I set the y-values based on the cluster value: either 0, 0.5 or 1. I then obtain the image below. The vertical order is good, but the vertical margins between the bars are obviously way off; they should be similar to the first result.
The code to produce this is:
import plotly.graph_objects as go
def find_node_coordinates(sources):
x_nodes, y_nodes = [], []
for s in sources:
# Shift each x with +- 0.045
x = float(s.split("_")[-1]) * (1/21)
x_nodes.append(x)
# Choose either 0, 0.5 or 1 for the y-value
cluster_number = s[1]
if cluster_number == "0": y = 1
elif cluster_number == "1": y = 0.5
else: y = 1e-09
y_nodes.append(y)
return x_nodes, y_nodes
def visualize_cluster_flow_counts(counts):
all_sources = list(set(counts['from'].values.tolist() + counts['to'].values.tolist()))
node_x, node_y = find_node_coordinates(all_sources)
froms, tos, vals, labs = [], [], [], []
for index, row in counts.iterrows():
froms.append(all_sources.index(row.values[0]))
tos.append(all_sources.index(row.values[1]))
vals.append(row[2])
labs.append(row[3])
fig = go.Figure(data=[go.Sankey(
arrangement='snap',
node = dict(
pad = 15,
thickness = 5,
line = dict(color = "black", width = 0.1),
label = all_sources,
color = "blue",
x = node_x,
y = node_y,
),
link = dict(
source = froms,
target = tos,
value = vals,
label = labs
))])
fig.update_layout(title_text="Patient flow between clusters over time: 48h (2 days) - 504h (21 days)", font_size=10)
fig.show()
visualize_cluster_flow_counts(counts)
Question: how do I fix the margins of the bars, so that the result looks like the first result? So, for clarity: the bars should be pushed to the bottom. Or is there another way that the Sankey diagram can vertically re-order the bars automatically based on the label value?
Upvotes: 7
Views: 815
Reputation: 110
Firstly I don't think there is a way with the current exposed API to achieve your goal smoothly you can check the source code here.
Try to change your find_node_coordinates
function as follows (note that you should pass the counts DataFrame
to):
counts = pd.DataFrame(counts_dict)
def find_node_coordinates(sources, counts):
x_nodes, y_nodes = [], []
flat_on_top = False
range = 1 # The y range
total_margin_width = 0.15
y_range = 1 - total_margin_width
margin = total_margin_width / 2 # From number of Cs
srcs = counts['from'].values.tolist()
dsts = counts['to'].values.tolist()
values = counts['value'].values.tolist()
max_acc = 0
def _calc_day_flux(d=1):
_max_acc = 0
for i in [0,1,2]:
# The first ones
from_source = 'C{}_{}'.format(i,d)
indices = [i for i, val in enumerate(srcs) if val == from_source]
for j in indices:
_max_acc += values[j]
return _max_acc
def _calc_node_io_flux(node_str):
c,d = int(node_str.split('_')[0][-1]), int(node_str.split('_')[1])
_flux_src = 0
_flux_dst = 0
indices_src = [i for i, val in enumerate(srcs) if val == node_str]
indices_dst = [j for j, val in enumerate(dsts) if val == node_str]
for j in indices_src:
_flux_src += values[j]
for j in indices_dst:
_flux_dst += values[j]
return max(_flux_dst, _flux_src)
max_acc = _calc_day_flux()
graph_unit_per_val = y_range / max_acc
print("Graph Unit per Acc Val", graph_unit_per_val)
for s in sources:
# Shift each x with +- 0.045
d = int(s.split("_")[-1])
x = float(d) * (1/21)
x_nodes.append(x)
print(s, _calc_node_io_flux(s))
# Choose either 0, 0.5 or 1 for the y-v alue
cluster_number = s[1]
# Flat on Top
if flat_on_top:
if cluster_number == "0":
y = _calc_node_io_flux('C{}_{}'.format(2, d))*graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(1, d))*graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(0, d))*graph_unit_per_val/2
elif cluster_number == "1": y = _calc_node_io_flux('C{}_{}'.format(2, d))*graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(1, d))*graph_unit_per_val/2
else: y = 1e-09
# Flat On Bottom
else:
if cluster_number == "0": y = 1 - (_calc_node_io_flux('C{}_{}'.format(0,d))*graph_unit_per_val / 2)
elif cluster_number == "1": y = 1 - (_calc_node_io_flux('C{}_{}'.format(0,d))*graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(1,d)) * graph_unit_per_val /2 )
elif cluster_number == "2": y = 1 - (_calc_node_io_flux('C{}_{}'.format(0,d))*graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(1,d)) * graph_unit_per_val + margin + _calc_node_io_flux('C{}_{}'.format(2,d)) * graph_unit_per_val /2 )
y_nodes.append(y)
return x_nodes, y_nodes
Sankey graphs supposed to weigh their connection width by their corresponding normalized values right? Here I do the same, first, it calculates each node flux, later by calculating the normalized coordinate the center of each node calculated according to their flux.
Here is the sample output of your code with the modified function, note that I tried to adhere to your code as much as possible so it's a bit unoptimized(for example, one could store the values of nodes above each specified source node to avoid its flux recalculation).
There is a bit of inconsistency in the flat_on_bottom
version which I think is caused by the padding or other internal sources of Plotly API.
Upvotes: 1