Reputation: 1132
Consider the following dataframe:
import pandas as pd
x = pd.DataFrame([[ 'a', 'b'], ['a', 'c'], ['c', 'b'], ['d', 'c']])
print(x)
0 1
0 a b
1 a c
2 c b
3 d c
I would like to obtain the relative frequencies of the data in each column of the dataframe based on some custom "bins" which would be (a possible super-set of) the unique data values. For example, if:
b = ['a', 'b', 'c', 'd', 'e', 'f']
I would like to obtain:
0 1
a 2 0
b 0 2
c 1 2
d 1 0
e 0 0
f 0 0
Is there a one (or two) liner to achieve this?
Upvotes: 0
Views: 414
Reputation: 35626
Try apply
value_counts
, then reindex
based on b:
import pandas as pd
x = pd.DataFrame([['a', 'b'], ['a', 'c'], ['c', 'b'], ['d', 'c']])
b = ['a', 'b', 'c', 'd', 'e', 'f']
df = x.apply(lambda s: s.value_counts()).reindex(b).fillna(0).astype(int)
print(df)
df
:
0 1
a 2 0
b 0 2
c 1 2
d 1 0
e 0 0
f 0 0
import pandas as pd
x = pd.DataFrame([['a', 'b'], ['a', 'c'], ['c', 'b'], ['d', 'c']])
b = ['a', 'b', 'c', 'd', 'e', 'f']
df = x.melt()
df = pd.crosstab(df['value'], df['variable']) \
.reindex(b).fillna(0).astype(int) \
.rename_axis(None, axis=1).rename_axis(None, axis=0)
print(df)
df
:
0 1
a 2 0
b 0 2
c 1 2
d 1 0
e 0 0
f 0 0
Upvotes: 1