Reputation: 39
I'm trying to count the number of every observation for each variable in a dataset regarding a specific group.
The data looks like this:
grp v1 vn
1 2 5
2 4
3 3 4
1 3
1 2 12
4 5
5 3 6
5 6
The Result should be a table like this:
grp v1 vn
1 2 3
2 1 0
3 1 1
4 0 1
5 2 1
I tried to use
x %>% group_by(grp) %>% summarise(across(everything(),n = n()))
but it didn`t really worked.
Any help is appreciated. Thanks in advance!
Upvotes: 0
Views: 744
Reputation: 887128
Using data.table
library(data.table)
setDT(df)[, lapply(.SD, function(x) sum(!is.na(x))), grp]
# grp v1 vn
#1: 1 2 3
#2: 2 1 0
#3: 3 1 1
#4: 4 0 1
#5: 5 2 1
Upvotes: 2
Reputation: 72828
Using aggregate
.
aggregate(cbind(v1, vn) ~ grp, replace(dat, is.na(dat), 0), function(x) sum(as.logical(x)))
# grp v1 vn
# 1 1 2 3
# 2 2 1 0
# 3 3 1 1
# 4 4 0 1
# 5 5 2 1
Data:
dat <- read.table(header=T, text='grp v1 vn
1 2 5
2 4 NA
3 3 4
1 NA 3
1 2 12
4 NA 5
5 3 6
5 6 NA
')
Upvotes: 0
Reputation: 21918
You can also use the following solution:
library(dplyr)
df %>%
group_by(grp) %>%
summarise(across(v1:vn, ~ sum(!is.na(.x))))
# A tibble: 5 x 3
grp v1 vn
<int> <int> <int>
1 1 2 3
2 2 1 0
3 3 1 1
4 4 0 1
5 5 2 1
Upvotes: 2
Reputation: 388982
Get the data in long format, count non-NA values for each column in each group and get the data in wide format.
library(dplyr)
library(tidyr)
df %>%
pivot_longer(cols = -grp) %>%
group_by(grp, name) %>%
summarise(n = sum(!is.na(value))) %>%
ungroup %>%
pivot_wider(names_from = name, values_from = n)
# grp v1 vn
# <int> <int> <int>
#1 1 2 3
#2 2 1 0
#3 3 1 1
#4 4 0 1
#5 5 2 1
data
df <- structure(list(grp = c(1L, 2L, 3L, 1L, 1L, 4L, 5L, 5L), v1 = c(2L,
4L, 3L, NA, 2L, NA, 3L, 6L), vn = c(5L, NA, 4L, 3L, 2L, 5L, 6L,
NA)), class = "data.frame", row.names = c(NA, -8L))
Upvotes: 2