Reputation: 343
I have a dataframe which looks as following:
head(test_df, n =15)
# print the first 15rows of the dataframe
value frequency index
1 -2.90267705917358 1 1
2 -2.90254878997803 1 1
3 -2.90252590179443 1 1
4 -2.90219354629517 1 1
5 -2.90201354026794 1 1
6 -2.9016375541687 1 1
7 -2.90107154846191 1 1
8 -2.90089440345764 1 1
9 -2.89996957778931 1 1
10 -2.89970088005066 1 1
11 -2.89928865432739 1 2
12 -2.89920520782471 1 2
13 -2.89907360076904 1 2
14 -2.89888191223145 1 2
15 -2.8988630771637 1 2
The dataframe has 3columns and 61819rows. To aggregate the dataframe, I want to get the mean value for the columns 'value' and 'frequency' for all rows with the same 'index'.
I already found some useful links, see:
https://www.r-bloggers.com/2018/07/how-to-aggregate-data-in-r/
However, I could not solve the problem yet.
test_df_ag <- stats::aggregate(test_df[1:2], by = test_df[3], FUN = 'mean')
# aggregate the dataframe based on the 'index' column (build the mean)
index value frequency
1 1 NA 1
2 2 NA 1
3 3 NA 1
4 4 NA 1
5 5 NA 1
6 6 NA 1
7 7 NA 1
8 8 NA 1
9 9 NA 1
10 10 NA 1
11 11 NA 1
12 12 NA 1
13 13 NA 1
14 14 NA 1
15 15 NA 1
Since I just get NA values for the column 'value', I wonder whether it might just be a data type issue?! However also when I tried to convert the data type I failed...
base::typeof(test_df$value)
# query the data type of the 'value' column
[1] "integer"
Upvotes: 0
Views: 625
Reputation: 887118
Using data.table
library(data.table)
setDT(test_df)[, lapply(.SD, mean), by = index, .SDcols = 1:2]
Upvotes: 2
Reputation: 76402
1. Here is a base R solution.
aggregate(cbind(value, frequency) ~ index, data = test_df, FUN = mean)
# index value frequency
#1 1 -2.901523 1
#2 2 -2.899062 1
2. And a simple dplyr
solution.
library(dplyr)
test_df %>%
group_by(index) %>%
summarize(across(1:2, mean))
## A tibble: 2 x 3
# index value frequency
#* <int> <dbl> <dbl>
#1 1 -2.90 1
#2 2 -2.90 1
test_df <-
structure(list(value = c(-2.90267705917358, -2.90254878997803,
-2.90252590179443, -2.90219354629517, -2.90201354026794, -2.9016375541687,
-2.90107154846191, -2.90089440345764, -2.89996957778931, -2.89970088005066,
-2.89928865432739, -2.89920520782471, -2.89907360076904, -2.89888191223145,
-2.8988630771637), frequency = c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), index = c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L)), class = "data.frame", row.names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15"))
Upvotes: 2
Reputation: 1243
Try tidyverse. test_summary <- test_df %>% group_by(index) %>% summarise(n=n(), mean_value=mean(value, na.rm=T),mean_frequency=mean(frequency, na.rm=T))
.
Oh, and, of course, you should make sure you've checked the quality of your data and understand the ifs and whys of any NA's in your data set.
Upvotes: 1