Reputation: 438
I've tried Pandas and Numpy but haven't seen the result I want. I have a simple array that consists of several lines of this:
[[customer_number, customer_name, invoice balance],[customer_number, customer_name, invoice balance]]
and so on. Many have the same customer_number and every customer_number has it's own customer_name associated, so one will always equal the other. What I'd like to do is basically a group by function, similar to the in SQL. I want this:
[[customer_number, customer_name, sum(invoice_balance)]]
where the last sums all the invoice balances with the same customer_number, leaving me with an array consisting of all entirely unique customer_numbers and the sum of all invoice balances for that customer.
I'd prefer to do this without pandas or numpy, but will use it if need be. I've been trying to modify a version of this to work:
[sum(x[2]) for x in array]
but my invoice_balance is straight out of psycopg2 and is formatted as a Decimal object, and for some reason, that wasn't working.
Is there a way to do this without a library in Python, or is there some easy method in pandas/numpy?
edit: here is an example of the array I am working with that I get directly from psycopg2:
[[Decimal('1111'), 'Customer1', Decimal('31.50')],
[Decimal('1112'), 'Customer2', Decimal('30.88')],
[Decimal('1111'), 'Customer1', Decimal('90.00')],
[Decimal('1113'), 'Customer3', Decimal('30.88')],
[Decimal('1112'), 'Customer2', Decimal('30.88')],
[Decimal('1112'), 'Customer2', Decimal('15.00')],
[Decimal('1111'), 'Customer1', Decimal('37.93')],
[Decimal('1113'), 'Customer3', Decimal('30.88')],
[Decimal('1111'), 'Customer1', Decimal('30.88')],
[Decimal('1111'), 'Customer1', Decimal('30.88')],
[Decimal('1113'), 'Customer3', Decimal('26.60')],
[Decimal('1113'), 'Customer3', Decimal('44.22')],
[Decimal('1112'), 'Customer2', Decimal('32.93')],
[Decimal('1111'), 'Customer1', Decimal('20.00')],
[Decimal('1113'), 'Customer3', Decimal('38.14')],
[Decimal('1111'), 'Customer1', Decimal('16.60')],
[Decimal('1112'), 'Customer2', Decimal('67.46')],
[Decimal('1111'), 'Customer1', Decimal('30.88')],
[Decimal('1113'), 'Customer3', Decimal('30.88')],
[Decimal('1111'), 'Customer1', Decimal('233.42')]]
and the error I receive when I try [sum(x[2]) for x in array]
:
TypeError: 'decimal.Decimal' object is not iterable
edit 2:
[Decimal('1112'), Decimal('393217'), datetime.date(2021, 5, 5), Decimal('961.96'), Decimal('46.16'), Decimal('551.05'), Decimal('961.96')],
[Decimal('1111'), Decimal('392865'), datetime.date(2021, 4, 29), Decimal('270.57'), Decimal('221.65'), Decimal('0.00'), Decimal('270.57')],
[Decimal('1113'), Decimal('392716'), datetime.date(2021, 4, 27), Decimal('494.44'), Decimal('123.45'), Decimal('0.00'), Decimal('494.44')],
[Decimal('1112'), Decimal('392654'), datetime.date(2021, 4, 26), Decimal('156.60'), Decimal('69.99'), Decimal('6.50'), Decimal('156.60')],
[Decimal('1113'), Decimal('392654'), datetime.date(2021, 4, 26), Decimal('160.42'), Decimal('72.99'), Decimal('52.80'), Decimal('160.42')]]
per Mark's answer, I am curious how to adjust his code to make this sum each column that is not the customer id or name so I end up with something like this:
[[customer_id, customer_name, sum(total), sum(applied), sum(credit), sum(balance)]]
Upvotes: 0
Views: 349
Reputation: 95948
Just to show you that you can do this with pandas
also:
In [1]: import pandas as pd
In [2]: from decimal import Decimal
In [3]: data = [[Decimal('1111'), 'Customer1', Decimal('31.50')],
...: [Decimal('1112'), 'Customer2', Decimal('30.88')],
...: [Decimal('1111'), 'Customer1', Decimal('90.00')],
...: [Decimal('1113'), 'Customer3', Decimal('30.88')],
...: [Decimal('1112'), 'Customer2', Decimal('30.88')],
...: [Decimal('1112'), 'Customer2', Decimal('15.00')],
...: [Decimal('1111'), 'Customer1', Decimal('37.93')],
...: [Decimal('1113'), 'Customer3', Decimal('30.88')],
...: [Decimal('1111'), 'Customer1', Decimal('30.88')],
...: [Decimal('1111'), 'Customer1', Decimal('30.88')],
...: [Decimal('1113'), 'Customer3', Decimal('26.60')],
...: [Decimal('1113'), 'Customer3', Decimal('44.22')],
...: [Decimal('1112'), 'Customer2', Decimal('32.93')],
...: [Decimal('1111'), 'Customer1', Decimal('20.00')],
...: [Decimal('1113'), 'Customer3', Decimal('38.14')],
...: [Decimal('1111'), 'Customer1', Decimal('16.60')],
...: [Decimal('1112'), 'Customer2', Decimal('67.46')],
...: [Decimal('1111'), 'Customer1', Decimal('30.88')],
...: [Decimal('1113'), 'Customer3', Decimal('30.88')],
...: [Decimal('1111'), 'Customer1', Decimal('233.42')]]
In [4]: df = pd.DataFrame(data, columns=['customer_id', 'customer_name', 'invoice_balance'])
In [5]: df
Out[5]:
customer_id customer_name invoice_balance
0 1111 Customer1 31.50
1 1112 Customer2 30.88
2 1111 Customer1 90.00
3 1113 Customer3 30.88
4 1112 Customer2 30.88
5 1112 Customer2 15.00
6 1111 Customer1 37.93
7 1113 Customer3 30.88
8 1111 Customer1 30.88
9 1111 Customer1 30.88
10 1113 Customer3 26.60
11 1113 Customer3 44.22
12 1112 Customer2 32.93
13 1111 Customer1 20.00
14 1113 Customer3 38.14
15 1111 Customer1 16.60
16 1112 Customer2 67.46
17 1111 Customer1 30.88
18 1113 Customer3 30.88
19 1111 Customer1 233.42
Now, you can use a sql-esque declarative approach with pandas:
In [6]: df.groupby(['customer_id', 'customer_name'])['invoice_balance'].sum()
Out[6]:
customer_id customer_name
1111 Customer1 522.09
1112 Customer2 177.15
1113 Customer3 201.60
Name: invoice_balance, dtype: object
Of course, I probably wouldn't add pandas as a dependency to your project just for this. but it is possible.
Upvotes: 1
Reputation: 5857
# always use decimal type for money, not float
from decimal import Decimal
# input data
data = [
[ 1, 'Bob', Decimal('1.23') ],
[ 2, 'Alice', Decimal('2.34') ],
[ 1, 'Bob', Decimal('3.45') ],
[ 2, 'Alice', Decimal('4.56') ],
]
# sum balances into buckets by customer number
buckets = {}
for num, name, balance in data:
buckets.setdefault(num, [num, name, Decimal('0.00')])[2] += balance
# print the result
for bucket in buckets.values():
print(bucket)
Output:
[1, 'Bob', Decimal('4.68')]
[2, 'Alice', Decimal('6.90')]
Upvotes: 0
Reputation: 92440
You can make a dict that is keyed to the tuple of account name/number. Then loop through and collect the sums in the dict. Afterward you can convert the dict items()
back a list:
accounts = {}
for num, name, balance in l:
accounts[(num, name)] = accounts.get((num, name), 0) + balance
result = [[num, name, balance] for (num, name), balance in accounts.items()]
result will be:
[[Decimal('1111'), 'Customer1', Decimal('522.09')],
[Decimal('1112'), 'Customer2', Decimal('177.15')],
[Decimal('1113'), 'Customer3', Decimal('201.60')]]
Upvotes: 2