SamuelBourgeois
SamuelBourgeois

Reputation: 53

Why is the code running so slow that I use for loop in it. Is there a faster way?

I have such data.

data = [
        ['2019-01-01', 'a',0],
        ['2019-01-02', 'b',0],
        ['2019-01-03', 'c',0],
        ['2019-01-04', 'd',0],
        ['2019-01-05', 'a',0],
        ['2019-01-05', 'd',0],
        ['2019-01-06', 'd',0],
        ['2019-01-07', 'f',0],
        ['2019-01-08', 'c',0],
        ['2019-01-08', 'b',0],
        ['2019-01-08', 'g',0],
        ['2019-01-08', 'h',0],
        ['2019-01-09', 'q',0],
        ['2019-01-09', 'b',0],
        ['2019-01-09', 'y',0],
        ['2019-01-10', 'd',0],
        ['2019-01-11', 'z',0],
        ['2019-01-11', 'x',0],
        ['2019-01-11', 'c',0],
        ['2019-01-12', 'y',0],
        ['2019-01-13', 'x',0],
        ['2019-01-13', 'q',0],
        ['2019-01-14', 't',0],
        ['2019-01-15', 'i',0]]
  
df = pd.DataFrame(data, columns = ['Date', 'Column1','Column2'])
    Date    Column1 Column2
0   2019-01-01  a   0
1   2019-01-02  b   0
2   2019-01-03  c   0
3   2019-01-04  d   0
4   2019-01-05  a   0
5   2019-01-05  d   0
6   2019-01-06  d   0
7   2019-01-07  f   0
8   2019-01-08  c   0
9   2019-01-08  b   0
10  2019-01-08  g   0
11  2019-01-08  h   0
12  2019-01-09  q   0
13  2019-01-09  b   0
14  2019-01-09  y   0
15  2019-01-10  d   0
16  2019-01-11  z   0
17  2019-01-11  x   0
18  2019-01-11  c   0
19  2019-01-12  y   0
20  2019-01-13  x   0
21  2019-01-13  q   0
22  2019-01-14  t   0
23  2019-01-15  i   0

My goal is to look at each column1 element and make the value of column2 1 if this element exists in column1 before.

I wrote a code like this.

for i in range(0,len(df)):
    for j in range(0,i-1):
        if df.Column1[i] == df.Column1[j]:
            df.Column2[i] = 1  

And I got the result I wanted.


Date    Column1 Column2
0   2019-01-01  a   0
1   2019-01-02  b   0
2   2019-01-03  c   0
3   2019-01-04  d   0
4   2019-01-05  a   1
5   2019-01-05  d   1
6   2019-01-06  d   1
7   2019-01-07  f   0
8   2019-01-08  c   1
9   2019-01-08  b   1
10  2019-01-08  g   0
11  2019-01-08  h   0
12  2019-01-09  q   0
13  2019-01-09  b   1
14  2019-01-09  y   0
15  2019-01-10  d   1
16  2019-01-11  z   0
17  2019-01-11  x   0
18  2019-01-11  c   1
19  2019-01-12  y   1
20  2019-01-13  x   1
21  2019-01-13  q   1
22  2019-01-14  t   0
23  2019-01-15  i   0

But when I run this code on 100000 rows of data, it runs very slowly.

Is there a way to do this in a shorter time or are there different solution suggestions for this problem?

Thanks for answers

Upvotes: 5

Views: 182

Answers (3)

anky
anky

Reputation: 75080

You can do groupby and cumcount on column1 and then clip the upper limit to 1:

df['Column2'] = df.groupby("Column1").cumcount().clip(upper=1)

However, even more concise would be to check for series.duplicated here:

df['Column2'] = df['Column1'].duplicated().astype(int)

print(df)

          Date Column1  Column2
0   2019-01-01       a        0
1   2019-01-02       b        0
2   2019-01-03       c        0
3   2019-01-04       d        0
4   2019-01-05       a        1
5   2019-01-05       d        1
6   2019-01-06       d        1
7   2019-01-07       f        0
8   2019-01-08       c        1
9   2019-01-08       b        1
10  2019-01-08       g        0
11  2019-01-08       h        0
12  2019-01-09       q        0
13  2019-01-09       b        1
14  2019-01-09       y        0
15  2019-01-10       d        1
16  2019-01-11       z        0
17  2019-01-11       x        0
18  2019-01-11       c        1
19  2019-01-12       y        1
20  2019-01-13       x        1
21  2019-01-13       q        1
22  2019-01-14       t        0
23  2019-01-15       i        0

Upvotes: 8

Teejay Bruno
Teejay Bruno

Reputation: 2159

Other answers utilizing pandas functions are probably much faster, but here is a solution similar to your original which removes the double iteration.

exists = dict()

for i in range(len(df)):
    df.Column2[i] = exists.get(df.Column1[i], 0)
    if not df.Column2[i]:
        exists[df.Column1[i]] = 1
print(df)

Upvotes: 0

Andrej Kesely
Andrej Kesely

Reputation: 195408

You can use .groupby on Column1 with "cumcount" transform:

df["Column2"] = (
    df.groupby("Column1", sort=False)["Column1"]
    .transform("cumcount")
    .gt(0)
    .astype(int)
)
print(df)

Prints:

          Date Column1  Column2
0   2019-01-01       a        0
1   2019-01-02       b        0
2   2019-01-03       c        0
3   2019-01-04       d        0
4   2019-01-05       a        1
5   2019-01-05       d        1
6   2019-01-06       d        1
7   2019-01-07       f        0
8   2019-01-08       c        1
9   2019-01-08       b        1
10  2019-01-08       g        0
11  2019-01-08       h        0
12  2019-01-09       q        0
13  2019-01-09       b        1
14  2019-01-09       y        0
15  2019-01-10       d        1
16  2019-01-11       z        0
17  2019-01-11       x        0
18  2019-01-11       c        1
19  2019-01-12       y        1
20  2019-01-13       x        1
21  2019-01-13       q        1
22  2019-01-14       t        0
23  2019-01-15       i        0

Upvotes: 4

Related Questions