Reputation: 1237
We are trying to run a code involving parallelization in R using the ResistanceGA package which calls the doParallel package. We have extremely large memory so this should not be the issue.
This is the error we get:
Error in serialize(data, node$con, xdr = FALSE) : ignoring SIGPIPE signal
Error in serialize(data, node$con, xdr = FALSE) :
error writing to connection
Here is a reproducible example code, copied from the tutorial, which triggers the issue with our particular setup:
write.dir <- #please fill here
library(ResistanceGA)
data(resistance_surfaces)
data(samples)
sample.locales <-SpatialPoints(samples[,c(2,3)])
r.stack <-stack(resistance_surfaces$categorical,resistance_surfaces$continuous,resistance_surfaces$feature)
GA.inputs <-GA.prep(ASCII.dir = r.stack,Results.dir = write.dir,method = "LL",max.cat = 500,max.cont = 500,seed = 555,parallel = 4)
gdist.inputs <-gdist.prep(length(sample.locales),samples = sample.locales,method ='commuteDistance')
PARM <-c(1, 250, 75, 1, 3.5, 150, 1, 350)
Resist <-Combine_Surfaces(PARM = PARM,gdist.inputs = gdist.inputs,GA.inputs = GA.inputs,out = NULL,rescale = TRUE)
gdist.response <-Run_gdistance(gdist.inputs = gdist.inputs,r = Resist)
gdist.inputs <-gdist.prep(n.Pops =length(sample.locales),samples = sample.locales,response =as.vector(gdist.response),method ='commuteDistance')
Multi.Surface_optim <-MS_optim(gdist.inputs = gdist.inputs,GA.inputs = GA.inputs)
Session info:
R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ResistanceGA_4.1-0.46 raster_3.4-10 sp_1.4-5
loaded via a namespace (and not attached):
[1] jsonlite_1.7.2 splines_4.0.5 foreach_1.5.1
[4] gtools_3.8.2 shiny_1.6.0 expm_0.999-6
[7] stats4_4.0.5 spatstat.geom_2.1-0 LearnBayes_2.15.1
[10] pillar_1.6.1 lattice_0.20-44 glue_1.4.2
[13] digest_0.6.27 promises_1.2.0.1 polyclip_1.10-0
[16] minqa_1.2.4 colorspace_2.0-1 MuMIn_1.43.17
[19] htmltools_0.5.1.1 httpuv_1.6.1 Matrix_1.3-3
[22] plyr_1.8.6 spatstat.sparse_2.0-0 JuliaCall_0.17.4
[25] pkgconfig_2.0.3 gmodels_2.18.1 purrr_0.3.4
[28] xtable_1.8-4 spatstat.core_2.1-2 scales_1.1.1
[31] gdata_2.18.0 tensor_1.5 XR_0.7.2
[34] later_1.2.0 spatstat.utils_2.1-0 lme4_1.1-27
[37] proxy_0.4-25 tibble_3.1.2 mgcv_1.8-35
[40] generics_0.1.0 ggplot2_3.3.3 ellipsis_0.3.2
[43] XRJulia_0.9.0 cli_2.5.0 magrittr_2.0.1
[46] crayon_1.4.1 mime_0.10 deldir_0.2-10
[49] fansi_0.4.2 doParallel_1.0.16 nlme_3.1-152
[52] MASS_7.3-54 class_7.3-19 tools_4.0.5
[55] lifecycle_1.0.0 munsell_0.5.0 e1071_1.7-6
[58] gdistance_1.3-6 akima_0.6-2.1 compiler_4.0.5
[61] rlang_0.4.11 units_0.7-1 classInt_0.4-3
[64] grid_4.0.5 nloptr_1.2.2.2 iterators_1.0.13
[67] goftest_1.2-2 igraph_1.2.6 miniUI_0.1.1.1
[70] boot_1.3-28 GA_3.2.1 gtable_0.3.0
[73] codetools_0.2-18 abind_1.4-5 DBI_1.1.1
[76] R6_2.5.0 knitr_1.33 dplyr_1.0.6
[79] fastmap_1.1.0 utf8_1.2.1 ggExtra_0.9
[82] spdep_1.1-7 KernSmooth_2.23-20 spatstat.data_2.1-0
[85] parallel_4.0.5 Rcpp_1.0.6 vctrs_0.3.8
[88] sf_0.9-8 rpart_4.1-15 coda_0.19-4
[91] spData_0.3.8 tidyselect_1.1.1 xfun_0.23
We have tried reinstalling everything with different versions, to no avail. It works on Windows.
Upvotes: 4
Views: 1144
Reputation: 6805
It seems to be because registerGA does not work on forked parallel processing. The way it is implemented, or rather GA:::startParallel()
is that it'll use forked parallel processing if you're on Unix or macOS. On MS Windows, you'll get PSOCK-based parallel processing.
The following works on R 4.1.0 with Linux.
## Not on CRAN (https://github.com/wpeterman/ResistanceGA)
library(ResistanceGA)
## Use PSOCK background workers for parallel processing
parallel <- parallel::makeCluster(4L)
write.dir <- tempdir()
data(resistance_surfaces)
data(samples)
sample.locales <- SpatialPoints(samples[,c(2,3)])
r.stack <- stack(resistance_surfaces$categorical, resistance_surfaces$continuous, resistance_surfaces$feature)
GA.inputs <- GA.prep(ASCII.dir = r.stack, Results.dir = write.dir, method = "LL",max.cat = 500, max.cont = 500, seed = 555, parallel = parallel)
gdist.inputs <- gdist.prep(length(sample.locales), samples = sample.locales,method = "commuteDistance")
PARM <- c(1, 250, 75, 1, 3.5, 150, 1, 350)
Resist <- Combine_Surfaces(PARM = PARM, gdist.inputs = gdist.inputs, GA.inputs = GA.inputs, out = NULL, rescale = TRUE)
gdist.response <- Run_gdistance(gdist.inputs = gdist.inputs, r = Resist)
gdist.inputs <- gdist.prep(n.Pops = length(sample.locales), samples = sample.locales,response = as.vector(gdist.response), method = "commuteDistance")
Multi.Surface_optim <- MS_optim(gdist.inputs = gdist.inputs, GA.inputs = GA.inputs)
Upvotes: 4