Julian Wittische
Julian Wittische

Reputation: 1237

Error writing to connection - Parallelization with R - Linux/Ubuntu issue

We are trying to run a code involving parallelization in R using the ResistanceGA package which calls the doParallel package. We have extremely large memory so this should not be the issue.

This is the error we get:

Error in serialize(data, node$con, xdr = FALSE) : ignoring SIGPIPE signal
Error in serialize(data, node$con, xdr = FALSE) :
  error writing to connection

Here is a reproducible example code, copied from the tutorial, which triggers the issue with our particular setup:

write.dir <- #please fill here
library(ResistanceGA)
data(resistance_surfaces)
data(samples)
sample.locales <-SpatialPoints(samples[,c(2,3)])
r.stack <-stack(resistance_surfaces$categorical,resistance_surfaces$continuous,resistance_surfaces$feature)
GA.inputs <-GA.prep(ASCII.dir = r.stack,Results.dir = write.dir,method = "LL",max.cat = 500,max.cont = 500,seed = 555,parallel = 4)
gdist.inputs <-gdist.prep(length(sample.locales),samples = sample.locales,method ='commuteDistance')
PARM <-c(1, 250, 75, 1, 3.5, 150, 1, 350)
Resist <-Combine_Surfaces(PARM = PARM,gdist.inputs = gdist.inputs,GA.inputs = GA.inputs,out = NULL,rescale = TRUE)
gdist.response <-Run_gdistance(gdist.inputs = gdist.inputs,r = Resist)
gdist.inputs <-gdist.prep(n.Pops =length(sample.locales),samples = sample.locales,response =as.vector(gdist.response),method ='commuteDistance')
Multi.Surface_optim <-MS_optim(gdist.inputs = gdist.inputs,GA.inputs = GA.inputs)

Session info:

R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base

other attached packages:
[1] ResistanceGA_4.1-0.46 raster_3.4-10         sp_1.4-5

loaded via a namespace (and not attached):
 [1] jsonlite_1.7.2        splines_4.0.5         foreach_1.5.1
 [4] gtools_3.8.2          shiny_1.6.0           expm_0.999-6
 [7] stats4_4.0.5          spatstat.geom_2.1-0   LearnBayes_2.15.1
[10] pillar_1.6.1          lattice_0.20-44       glue_1.4.2
[13] digest_0.6.27         promises_1.2.0.1      polyclip_1.10-0
[16] minqa_1.2.4           colorspace_2.0-1      MuMIn_1.43.17
[19] htmltools_0.5.1.1     httpuv_1.6.1          Matrix_1.3-3
[22] plyr_1.8.6            spatstat.sparse_2.0-0 JuliaCall_0.17.4
[25] pkgconfig_2.0.3       gmodels_2.18.1        purrr_0.3.4
[28] xtable_1.8-4          spatstat.core_2.1-2   scales_1.1.1
[31] gdata_2.18.0          tensor_1.5            XR_0.7.2
[34] later_1.2.0           spatstat.utils_2.1-0  lme4_1.1-27
[37] proxy_0.4-25          tibble_3.1.2          mgcv_1.8-35
[40] generics_0.1.0        ggplot2_3.3.3         ellipsis_0.3.2
[43] XRJulia_0.9.0         cli_2.5.0             magrittr_2.0.1
[46] crayon_1.4.1          mime_0.10             deldir_0.2-10
[49] fansi_0.4.2           doParallel_1.0.16     nlme_3.1-152
[52] MASS_7.3-54           class_7.3-19          tools_4.0.5
[55] lifecycle_1.0.0       munsell_0.5.0         e1071_1.7-6
[58] gdistance_1.3-6       akima_0.6-2.1         compiler_4.0.5
[61] rlang_0.4.11          units_0.7-1           classInt_0.4-3
[64] grid_4.0.5            nloptr_1.2.2.2        iterators_1.0.13
[67] goftest_1.2-2         igraph_1.2.6          miniUI_0.1.1.1
[70] boot_1.3-28           GA_3.2.1              gtable_0.3.0
[73] codetools_0.2-18      abind_1.4-5           DBI_1.1.1
[76] R6_2.5.0              knitr_1.33            dplyr_1.0.6
[79] fastmap_1.1.0         utf8_1.2.1            ggExtra_0.9
[82] spdep_1.1-7           KernSmooth_2.23-20    spatstat.data_2.1-0
[85] parallel_4.0.5        Rcpp_1.0.6            vctrs_0.3.8
[88] sf_0.9-8              rpart_4.1-15          coda_0.19-4
[91] spData_0.3.8          tidyselect_1.1.1      xfun_0.23

We have tried reinstalling everything with different versions, to no avail. It works on Windows.

Upvotes: 4

Views: 1144

Answers (1)

HenrikB
HenrikB

Reputation: 6805

It seems to be because registerGA does not work on forked parallel processing. The way it is implemented, or rather GA:::startParallel() is that it'll use forked parallel processing if you're on Unix or macOS. On MS Windows, you'll get PSOCK-based parallel processing.

The following works on R 4.1.0 with Linux.

## Not on CRAN (https://github.com/wpeterman/ResistanceGA)
library(ResistanceGA)

## Use PSOCK background workers for parallel processing
parallel <- parallel::makeCluster(4L)

write.dir <- tempdir()
data(resistance_surfaces)
data(samples)
sample.locales <- SpatialPoints(samples[,c(2,3)])

r.stack <- stack(resistance_surfaces$categorical, resistance_surfaces$continuous, resistance_surfaces$feature)

GA.inputs <- GA.prep(ASCII.dir = r.stack, Results.dir = write.dir, method = "LL",max.cat = 500, max.cont = 500, seed = 555, parallel = parallel)

gdist.inputs <- gdist.prep(length(sample.locales), samples = sample.locales,method = "commuteDistance")

PARM <- c(1, 250, 75, 1, 3.5, 150, 1, 350)

Resist <- Combine_Surfaces(PARM = PARM, gdist.inputs = gdist.inputs, GA.inputs = GA.inputs, out = NULL, rescale = TRUE)

gdist.response <- Run_gdistance(gdist.inputs = gdist.inputs, r = Resist)

gdist.inputs <- gdist.prep(n.Pops = length(sample.locales), samples = sample.locales,response = as.vector(gdist.response), method = "commuteDistance")

Multi.Surface_optim <- MS_optim(gdist.inputs = gdist.inputs, GA.inputs = GA.inputs)

Upvotes: 4

Related Questions