Reputation: 23
Hi I am new to pandas
/python
and trying to read a txt file in pandas
I want to extract key
, value
pairs for each row.
Make the key
as new column name and its respective value
as values.
Input
data
{'Name': 'Tim', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'Tom', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'Jim', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'John', 'Class': 'Ninth'}
Expected Output:
Name Class Hobbies
Tim Ninth Football
Tom Ninth Football
Jim Ninth Football
John Ninth NA
import pandas as pd
df1 = pd.read_csv('9data.txt',sep = '\t')
df1['Name'] = df1['data'].apply(lambda x : x.values()[1])
print(df1)
Error: AttributeError: 'str' object has no attribute 'values'
Is there any way in which i can do this in pandas
?
Upvotes: 0
Views: 51
Reputation: 5648
The way the data was being read, I could get it a new dataframe using eval()
. This will iterate over each cell creating a new dataframe then concatenating them.
data='''data
{'Name': 'Tim', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'Tom', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'Jim', 'Class': 'Ninth', 'Hobbies' : 'Football'}
{'Name': 'John', 'Class': 'Ninth'}'''
df = pd.read_csv(io.StringIO(data), sep='\t', engine='python')
df1 = pd.concat([pd.json_normalize(eval(x)) for x in df['data']])
Output
Name Class Hobbies
0 Tim Ninth Football
0 Tom Ninth Football
0 Jim Ninth Football
0 John Ninth NaN
If you can get your data look like this, this is simpler method that Anurag Dabas alludes to. You might consider reading the file into a list first, then creating the dataframe, rather creating a dataframe from a dataframe.
datal = [{'Name': 'Tim', 'Class': 'Ninth', 'Hobbies' : 'Football'},
{'Name': 'Tom', 'Class': 'Ninth', 'Hobbies' : 'Football'},
{'Name': 'Jim', 'Class': 'Ninth', 'Hobbies' : 'Football'},
{'Name': 'John', 'Class': 'Ninth'}]
df = pd.DataFrame(datal)
df
Upvotes: 1