Reputation: 399
When I run this code it drops the first row instead of the first column:
df.drop(axis=1, index=0)
How do you drop a column by index?
Upvotes: 1
Views: 618
Reputation: 5627
Using the example
df = pd.DataFrame([
[1023.423,12.59595],
[1000,11.63024902],
[975,9.529815674],
[100,-48.20524597]], columns = ['col1', 'col2'])
col1 col2
0 1023.423 12.595950
1 1000.000 11.630249
2 975.000 9.529816
3 100.000 -48.205246
If you do df.drop(index=0)
, the output is dropping row with index 0
col1 col2
1 1000.0 11.630249
2 975.0 9.529816
3 100.0 -48.205246
If you do df.drop('col1', axis=1)
, the output is dropping column with name 'col1'
col2
0 12.595950
1 11.630249
2 9.529816
3 -48.205246
Please remember to use inplace=True
where necessary
Upvotes: 1
Reputation: 1199
You can use df.columns[i]
to denote the column. Example:
df.drop(df.columns[0], axis=1)
Upvotes: 1