Reputation: 3
I would like to check the convergence of Sobol' sensitivity indices, using the sensobol library, by re-computing the sensitivity indices using sub-samples of decreasing size extracted from the original sample.
Here, I present an example code using the Ishigami function as model. Since computing the model output takes very long with the model I actually use, I want to avoid recomputing the model output for different sample sizes, but want to use sub-samples of my overall sample for this check.
I have written code that runs through, however, it seems that the result is 'not correct', as soon as the sample size is not equal the initial sample size.
Inital set-up
library(sensobol)
# Define settings
matrices <- c("A", "B", "AB", "BA")
N <- 1000
params <- paste("X", 1:3, sep = "")
first <- total <- "azzini"
order <- "first"
R <- 10
type <- "percent"
conf <- 0.95
# Create sample matrix using Sobol' (1967) quasi-random numbers
mat <- sobol_matrices(matrices = matrices, N = N, params = params, order = order, type = "QRN")
# Compute model output using Ishigami function as model
Y <- ishigami_Fun(mat)
Correct Sobol' indices as benchmark result
# Compute and bootstrap Sobol' indices for entire sample N
ind <- sobol_indices(matrices = c("A", "B", "AB", "BA"),
Y = Y,
N = N,
params = params,
boot = TRUE,
first = "azzini",
total = "azzini",
order = "first",
R = R,
type = type,
conf = conf)
cols <- colnames(ind)[1:length(params)]
ind[ , (cols):= round(.SD, 3), .SDcols = (cols)]
Check for convergence
Now, to analyze whether convergence is reached, I want to re-compute the sensitivity indices using sub-samples of decreasing size extracted from the original sample
# function to compute sensitivity indices, depending on the sample size and the model output vector
fct_conv <- function(N, Y) {
# compute how many model runs are performed in the case of the Azzini estimator
nr_model_runs <- 2*N*(length(params)+1) # length(params) = k
# extract sub-sample of model output
y_sub <- Y[1:nr_model_runs]
# compute and bootstrap Sobol' indices
ind_sub <- sobol_indices(matrices = c("A", "B", "AB", "BA"),
Y = y_sub,
N = N,
params = params,
boot = TRUE,
first = "azzini",
total = "azzini",
order = "first",
R = R,
type = type,
conf = conf)
cols <- colnames(ind_sub)[1:length(params)]
ind_sub[ , (cols):= round(.SD, 3), .SDcols = (cols)]
return(ind_sub)
}
Let's compare the benchmark result (ind
) to two other outputs: Running fct_conv
with the full sample (ind_full_sample
) and running fct_conv
with a very slightly reduced sample (ind_red_sample
).
ind_full_sample <- fct_conv(1000, Y)
ind_red_sample <- fct_conv(999, Y)
ind
ind_full_sample
ind_red_sample
It seems that as soon as the sample size is reduced, the result doesn't make sense. Why is that? I'd be glad for any hints or ideas!
Upvotes: 0
Views: 269
Reputation: 16
The results do not make sense because you are sampling without considering the ordering of the sample matrix. Try the following
# Load the required packages:
library(sensobol)
library(data.table)
library(ggplot2)
# Create function to swiftly check convergence (you do not need bootstrap)
sobol_convergence <- function(Y, N, sample.size, seed = 666) {
dt <- data.table(matrix(Y, nrow = N))
set.seed(seed) # To permit replication
subsample <- unlist(dt[sample(.N, sample.size)], use.names = FALSE)
ind <- sobol_indices(matrices = matrices,
Y = subsample,
N = sample.size,
params = params,
first = first,
total = total,
order = order)
return(ind)
}
# Define sequence of sub-samples at which you want to check convergence
sample.size <- seq(100, 1000, 50) # every 50
# Run function
ind.list <- lapply(sample.size, function(n)
sobol_convergence(Y = Y, N = N, sample.size = n))
# Extract total number of model runs C and results in each run
Cost <- indices <- list()
for(i in 1:length(ind.list)) {
Cost[[i]] <- ind.list[[i]]$C
indices[[i]] <- ind.list[[i]]$results
}
names(indices) <- Cost
# Final dataset
final.dt <- rbindlist(indices, idcol = "Cost")[, Cost:= as.numeric(Cost)]
# Plot results
ggplot(final.dt, aes(Cost, original, color = sensitivity)) +
geom_line() +
labs(x = "Total number of model runs", y = "Sobol' indices") +
facet_wrap(~parameters) +
theme_bw()
Upvotes: 0