Reputation: 213
I am analyzing time series data of one stock to seek the highest price for further analysis, here is the sample dataframe df
:
date close high_3days
2021-05-01 20 20
2021-05-02 23 23
2021-05-03 26 26
2021-05-04 24 26
2021-05-05 20 26
2021-05-06 26 26
2021-05-07 22 26
2021-05-08 30 30
2021-05-09 20 30
2021-05-10 20 30
I want to add a new column to find the number of days from previous 3 days high. My logic is seeking the index of the row of previous high, and then subtract it from the index of current row.
Here is the desire output:
date close high_3days days_previous_high
2021-05-01 20 20 0
2021-05-02 23 23 0
2021-05-03 26 26 0
2021-05-04 24 26 1
2021-05-05 20 26 2
2021-05-06 22 26 3
2021-05-07 20 26 4
2021-05-08 30 30 0
2021-05-09 20 30 1
2021-05-10 20 30 2
Could you help to figure the way out~? Thanks guys!
Upvotes: 2
Views: 273
Reputation: 35636
Try creating a boolean index with expanding max
, then enumerate each group with groupby cumcount
:
df['days_previous_high'] = df.groupby(
df['high_3days'].expanding().max().diff().gt(0).cumsum()).cumcount()
df
:
date close high_3days days_previous_high
0 2021-05-01 20 20 0
1 2021-05-02 23 23 0
2 2021-05-03 26 26 0
3 2021-05-04 24 26 1
4 2021-05-05 20 26 2
5 2021-05-06 22 26 3
6 2021-05-07 20 26 4
7 2021-05-08 30 30 0
8 2021-05-09 20 30 1
9 2021-05-10 20 30 2
Explaination:
expanding max
is used to determine the current maximum value at each row.
df['high_3days'].expanding().max()
diff
can be used to see where the current value exceeds the max.
df['high_3days'].expanding().max().diff()
groups can be created by taking the cumsum
of where the diff is greater than 0:
df['high_3days'].expanding().max().diff().gt(0).cumsum()
expanding_max expanding_max_diff expanding_max_gt_0 expanding_max_gt_0_cs
20.0 NaN False 0
23.0 3.0 True 1
26.0 3.0 True 2
26.0 0.0 False 2
26.0 0.0 False 2
26.0 0.0 False 2
26.0 0.0 False 2
30.0 4.0 True 3
30.0 0.0 False 3
30.0 0.0 False 3
Now that rows are grouped, groupby cumcount
can be used to enumerate each group:
df.groupby(df['high_3days'].expanding().max().diff().gt(0).cumsum()).cumcount()
0 0
1 0
2 0
3 1
4 2
5 3
6 4
7 0
8 1
9 2
dtype: int64
Upvotes: 2